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Welcome to IAMPS 2019. 
 
The International Workshop on Image Analysis Methods for the Plant Sciences (IAMPS) intend to bring 
together scientists interested in the development of methods and tools for image analysis dedicated or 
adapted for plants. It aims to review the image analysis methods and approaches currently being used 
and developed, and identify generic image analysis challenges arising from Plant Sciences. It is a forum to 
facilitate knowledge exchange and collaboration within the community. 
 
After six successful editions in Nottingham, Aberystwyth, Louvain la Neuve, Angers, and Nottingham, the 
2019 edition of IAMPS is organized by researchers from the LIRIS laboratory at Université Lumière Lyon2, 
in France. 
 
This year, we extend the conference to the discipline of robotics, thus broadening its scope for future 
years. On the one hand, the agricultural robotics field is developing more and more to, for example, help 
farmers by creating logistical assistance robots. These are "mule" carrier-follower robots, i.e. cobots, that 
follow farmers in the field to carry load (equipment, crops) at his/her place. They also aim to help the 
farmer take decisions by collecting data, such as crop mapping to define the volume of vegetation to be 
processed or the type of weed before spraying to reduce the amount of pesticides/fungicides to be used. 
Automatic image processing tools are increasingly used in this context with various types of imagery 
ranging from "simple" RGB photos to hyperspectral cameras images embedded on drones or tractors. 
On the other hand, some robotics researchers are also interested in developing new generations of robots 
with a lower environmental impact (in terms of greenhouse gas emissions, for example) than current 
robots. In this context, the proposed prototypes can be manufactured with bio-sourced materials, such 
as wood. In summary, plant sciences can guide the confection of robot architectures.  
 
This year spotlights talks, posters and attendees from France, United Kingdom, China, Australia, Japan, 
Germany, etc. working in academia, industry or both. 
 
We would like to thank the Université Lumière Lyon 2 for supporting us and all the members of the LIRIS-
Lyon 2 for their help on the conference organization. 
 
General chairs 
L. Tougne - LIRIS 
C. Crispim Junior - LIRIS 
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Social events 
 

 
• Social diner on Thursday July the 4th 

https://www.lesbateauxlyonnais.com/croisiere-restaurant-lyon/diner 
 

 
 

 
 

Starting point at “Parilly - Université” (TRAM T2) at 19:30. 
 
 

• Visit to Lyon old town on Friday, July the 5th. 
http://www.lyontraboules.net 
 

 
 

Starting point at “Parilly - Université” (TRAM T2) at 15:15 (metro Vieux Lyon – 16:00). 
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7th IAMPS 2019, 4-5 July 2019, Lyon 

International Workshop on Image Analysis Methods for the Plant Sciences 
Program 

      

Thursday July the 4th Friday July the 5th 
9H Reception/registration 

  

  

9H30-10H Welcome to Lyon 2 - A few 
words from the organizers 

9H00-10H Keynote 2 : R. Lenain 

10H-11H Keynote 1 : S. Briot 10H00-10H15 Coffee Break 

11H-11H15 Coffee Break 10H15-12H45 Oral session 3 

11H15-12H45 Oral session 1 12H45-14H Lunch at the university 
restaurant 

12H45-14H30 Lunch at the university 
restaurant 

14H-15H Poster session 2 

14H30-16H30 Oral session 2 15H-18H Social Event : Visit of Lyon 
old town  

16H30-16H45 Coffee Break     

16H45-18H00 Poster session 1     

19H30 Diner downtown     
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Invited speaker: S. Briot (LS2N) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Robotics for Plants, Plants for Robotics 
 
Robotics is more and more essential in many aspects of our human life, but also in plant life. Many robots 
are currently being developed to take care of plants: for example, to monitor their well-being, to propose 
new strategies to reduce the use of pesticides in agriculture, for crop phenotyping, for automatic 
harvesting. The first part of this presentation will present some relevant works related to the use of robots 
for plant monitoring and cultivation with some focus on image processing approaches used in these 
works. 
Robotics also takes inspiration from plants at different levels: 

- Bio-inpiration, i.e. the translation of fundamental biological principles into engineering design 
rules so that robot performs like a natural systems: e.g. artificially growing robots, robots behaving 
like plant roots for soil exploration and monitoring, robots performing artificial photosynthesis in 
order to produce their own energy,  

- Bio-hybridation, i.e. the direct use of (living) materials in order to design synthetic machines: e.g. 
plant bio-hybrid robots designed for modifying architectural ambiances, 

- Ecosustainability, i.e. the use of plant-based bio-sourced materials in order to lower robotics 
environmental impact: e.g. industrial robots designed in wood, in plant composites. 

In the second part of this talk, we will review main works in these fields and disclose their key issues, goals 
and interests, with a special focus on the use of plants for eco-design purpose at LS2N. 

 
 

Dr. Sébastien Briot received the PhD degree from the National 
Institute of Applied Sciences (INSA) of Rennes (France) in 2007. He 
worked at the Ecole de Technologie Supérieure of Montreal (Canada) 
as a postdoctorate fellow in 2007-2008. He was recruited at CNRS in 
2009 and he is currently working as CNRS researcher in the Laboratory 
of Digital Sciences of Nantes (LS2N, France). Since 2017, he is the head 
of the ARMEN research team at LS2N. 
His research fields concern the design optimization of robots and the 
analysis of their dynamic performance. He contributed to the eco-
sustainable design of robots by using plant-based bio-sourced 
materials for robot design purpose and also studied the impact of 
sensor-based controllers on the robot performance.  
Dr. Briot received the Award of the Best Ph.D. Thesis in Robotics from 
the French CNRS Research Group in Robotics for year 2007. In 2011, 
he received two other awards: the Award for the Best Young 
Researcher from the French Region Bretagne and the Award for the 
Best Young Researcher from the French Section of the American 
Society of Mechanical Engineering (SF-ASME). 
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Invited speaker: R. Lenain (IRSTEA) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Robotics in agriculture, a new vision 
 
The challenge of reducing environmental impacts of human activities, while preserving production level 
and human safety, resuires the development of new tools for agriculture. The reduction of chemical 
products indeed leads to the use of alternative solutions, implying more frequent treatments, and plant 
monitoring. Such manual operations then arises as time consuming and harmful. As a result, the use of 
robots then appears as a promising solution for both field surveillance as well as treatments. 
Nevertheless, the motion control of robots in off-road contexts is still challenging, because of the diversity 
and uncertainty of conditions and missions to be done. The talk will give an overview of the robotics in 
agriculture. From actual robots currently marketed to prototypes and new concepts, different aspects 
linked to the autonomy in off-road conditions will be described, such as sensors and perception systems 
(including vision), control purpose, as well as decision making. Throught many examples, the talk will give 
the current state of the art, the challenges and the prospects of agricultural robots, and their potential 
interests for social needs. 
 
 
 
 

 

Roland Lenain is currently research director at Irstea (National 
Research Centre for Environment and Agriculture) in the unit TSCF 
(Technology and Information Systems) at Clermont-Ferrand (France). 
He received a mechanical engineer degree from french institute for 
advanced mechanics in 2002. He obtained the same year a master 
degree in mechanical and civil engineering. He defended is PhD in 
2005 on the topis of automatic guidance of off-road mobile robots, at 
University Blaise Pascal (Clermont-Ferrand, France). After completing 
a post doctoral position in the department of Automatic Control in 
Lund University (sweden), he joined Irstea in 2006. He supervised 
several projects and thesis on topic of mobile robot control in harsh 
environment. He obtained the capability to conduct research in 2011, 
and currently lead the team Romea (Robotic and Mobility for 
Environment and Agriculture). He is also in charge of the theme 
terestrial mobile robotics of the National Research Group on 
Robotics. His research activities, focused on adaptive and predictive 
control of mobile robots in the context of natural environment, are 
deeply applied in the field of agricultural robots. 



 

Development of image processing methods for detection and localization of sugar 
beet leaves in crops for robotic phenotyping operations 

Bernard Benet and Roland Lenain 

Université Clermont Auvergne, Irstea, UR TSCF, Centre de Clermont-Ferrand, F-63178 Aubière, France 

Abstract 
 

For phenotyping operations, artificial vision devices operating in visible or hyperspectral color fields are 
used to perform geometric and colorimetric measurements. A robotic platform with a manipulator arm has 
been developed to detect diseases on sugar beet crops, during different growing stages. Image processing 
algorithms have been developed to separate plants, to localize leaves of each one. From this information, 
active perception operations were applied to put the camera located at the end of the effector of the robot, 
at the desired locations above the beet leaves. A new vision algorithm was then applied to detect sick 
areas on leaves. 

Keywords: Image processing, Machine Learning, Robotics, Manipulator arm, Phenotyping 

1 Introduction 

For sugar beet plants, the most important diseases which can 
affect the crops, during the growth process, are Oidium and 
Cercosporiose contamination. It is necessary to detect as soon as 
possible these diseases, in order to limit their development and 
propagation in the cultures. In recent years, the use of new 
technologies has become widespread in agriculture, through 
precision farming, with the aim of improving agricultural 
operations. The evolution of increasingly sophisticated 
perception sensors has enabled the development of high 
performance autonomous navigation systems, which can, in 
particular, perform agricultural tasks of crop monitoring, and 
measurements for different types of plants, while limiting human 
intervention, relatively restrictive. An important point of growing 
interest for the agricultural community is the protection of crops 
against a variety of factors that lead to reduced yields, such as 
diseases, that can affect plants during the growth process. There 
are several diseases that affect plants with the potential to cause 
devastating economic, social and ecological losses. In this 
context, diagnosing diseases in an accurate and quick way is of 
utmost importance. Vision devices are currently used to detect 
some diseases, which can be seen in the visible or invisible 
lighting spectrum. A large amount of information on the subject 
can be found in the papers by [1,2,3]. Fungal diseases have 
recently led to losses in world production, especially for sugar 
beet, wheat or maize. Article in [4] contains a state of the art of 
disease detection from different types of sensors (RGB, thermal, 
hyperspectral ...). The improvement of disease detection by 
automatic objective tools has become a major concern for 
agricultural producers.  In this paper, we will focus on the 
development of phenotyping tools and techniques to realize 
automatically by artificial vision, geometric and colorimetric 
measurements on sugar beet plants, for three operations: plant 
detection, leaf separation and disease detection.  In [5], a 
comparison of leaf detection algorithms was presented during 

the Leaf Segmentation Challenge in 2014. For disease detection, 
the objective was to develop an autonomous robotic system 
allowing putting a camera at the desired location for each leaf, 
taking into account various camera positions and orientations, 
using active perception, in order to acquire images with a high 
accuracy.  

2 Material and Methods 

A robotic platform composed by a motorized linear axis which 
carried a manipulator arm with six degrees of freedom (UR5 
Universal Robot) was developed for disease detection. At the 
end of this arm, a vision sensor (color or hyperspectral 
camera) was embedded to acquire and process images on 
sugar beet crops, with the possibility to acquire images with 
various heights and orientations. Figure 1 below shows 
Bettybot robot used with a RGB camera. First works achieved 
in image processing with this robot are presented in [6]. 
 

   
     
 
 
 
   
 
 
       

Bettybot robot                   Sugar beet images                   
                                                                                                                             
Figure 1: Bettybot robot with RGB camera for 
phenotyping 
 
Image processing algorithms were developed and applied to 
achieve three successive tasks: plant detection and separation, 
leaf localization for each plant and disease detection. 



 

3 Plant detection 

The image processing method used to detect and separate 
plants in a crop line was composed by several successive image 
processing functions:  RGB to HSV conversion, Filtering in H 
component to extract leaf green color, Canny method in V 
component to recover ribs and stems, Line detection with 
HoughLine method, Cross point detection between extended 
lines and finaly Morphological operations to obtain the center 
of each plant. A machine learning operation was added to the 
image processing functions, in order to improve the sugar beet 
center detection. For this operation, a learning stage was 
achieved before, considering three object classes (background 
images, leaf images and images containing a plant center), 
using inception-V3 neural network, Tensorflow tool and a 
‘retrain’ method to obtain the neural network for our 
application, using our image database which contained about 
50 images for each class. In Figure 2 some plant center 
detection results (object class and score (in red color)) are 
presented. 
 
      
 
 
 
 
 
 

Figure 2: Sugar beet plant center detection 
 

4 Leaf separation 

To detect the leaves for each plant (gravity center (in red color) 
and main inertial axis (in white color)), after detection of each 
plant, a new algorithm was applied, with the following 
functions (Figure 3): RGB to HSV conversion, Edge detection 
with Sobel method, Filtering in H component using Sobel 
method results, DistanceTransform function and finaly 
Watershed algorithm to find leaves. 
 
 
         
 
 
 
                 

 
Figure 3: Sugar beet leaf detection 

 
      5   Disease detection 

For detecting main diseases which affect sugar beet plants, an 
image processing method containing filtering operations in 
HSV color space and morphologic functions were applied. 

Figure 4 presents disease detection results: Oidium and 
Cercosporiose respectively in blue and red color.  
 

 

        

  

    
Figure 4:  Disease detection 

6   Conclusion - Discussion 

Experimentations with the phenotyping robot were achieved 
inside a laboratory to test and validate the images processing 
algorithms and active perception methods to put the camera at 
desired positions from detected leaves, for disease detection. 
The objective was to find parameters for image processing 
operations to obtain the best results as possible for plant center 
detection and leaf separation. The optimal sets of parameters 
permitted to obtain a success rate of 90% for center plant 
detection with the complementary use of the machine learning 
operation and a success rate of 80% for leaf separation. In 
2019, applications will be achieved with Bettybot robot 
embedded on a tractor, to study the disease propagation in 
sugar beet fields,  considering different growing stages. 
 
References 
 
[1] Bock, C. H., Poole, G. H., Parker, P. E., and Gottwald, T. 

R. 2010. Plant disease severity estimated visually, by 
digital photography and image analysis, and by 
hyperspectral imaging. Crit. Rev. Plant Sci. 29:59-107, 
USA. 

[2] Mahlein A.K. , Steiner U., Hillnhütter C., Dehne H.W. 
and Oerke E.C.. Hyperspectral imaging for small-scale 
analysis of symptoms caused by different sugar beet 
diseases. Plant Methods2012 8:3, Germany 

[3] Sankaran S., Mishra A., Ehsani R., Davi C.. A review of 
advanced techniques for detecting plant diseases. 
Computers and Electronics in Agriculture72 (2010) 1–13, 
USA 

[4] Barbedo J.G.A.. Digital image processing techniques for 
detecting, quantifying and classifying plant diseases. 
SpringerPlus, 2(1) :1, 2013. 

[5] Scharr H., Minervini M., French A.P., Klukas C., Kramer 
D.M., Liu X., Luengo I., Pape,G J.M.,. Polder, D. 
Vukadinovic, X. Yin, and S. A. Tsaftaris. Leaf 
segmentation in plant phenotyping : a collation study. 
Machine Vision and Applications, 27(4) :585–606, May 
2016. 

[6] Benet, B., Dubos, C., Maupas, F., Malatesta, G., Lenain, 
R. - Development of autonomous robotic platforms for 
sugar beet crop phenotyping using artificial vision, 
AGENG Conference, July 2018, Wageningen, NLD. 



Toward a procedural fruit tree rendering framework for image analysis
Thomas Duboudin1, Maxime Petit1, and Liming Chen1

1LIRIS, CNRS UMR 5205, Ecole Centrale de Lyon, France

Abstract

We propose a procedural fruit tree rendering framework, based on Blender and Python scripts allowing
to generate quickly labeled dataset (i.e. including ground truth semantic segmentation). It is designed
to train image analysis deep learning methods (e.g. in a robotic fruit harvesting context), where real
labeled training datasets are usually scarce and existing synthetic ones are too specialized. Moreover,
the framework includes the possibility to introduce parametrized variations in the model (e.g. lightning
conditions, background), producing a dataset with embedded Domain Randomization aspect.

Keywords: Synthetic Fruit Dataset, Harvesting Robotics, Procedural Model, Domain Randomization

1 Introduction and Previous Work
State-of-the-art methods for object recognition and grasping
are currently mostly based on deep neural network. Despite
tremendous results, these methods require a huge amount of
labeled data in order to be trained. This is a major drawback in
the field of robotics fruit-harvesting, where existing dataset are
usually too small and/or dedicated to a single specie (e.g. [1, 2]).

We previously tackled this issue for indoor object grasp-
ing robots using a simulated environment and rendering en-
gine [3, 4]. We apply here a similar strategy for fruits harvesting
problems by defining a framework capable of generating scenes
of fruit trees coupled with procedural scripts controlling param-
eters (e.g. position of the fruits, type of background, lightning
condition) to introduce realistic variations for outdoor data1.

One of the most photo-realistic synthetic dataset of fruit trees
is the work of Barth et al. [2] for sweet pepper. This come at
the price of a huge computational cost (10 min/frame with a
16 core processor) preventing it to be easily extendable in or-
der to produce large dataset for other fruits. In fact, such high
degree of photo-realism does not seem to be needed for deep
simulated learning [5]. That is why we aim at only an ade-
quate photo-realism with quick rendering and easy-generation
method, allowing scientists to create their own fruits or tree
dataset according to their precise research interests.

2 Material and Methods
We chose the open-source Blender as the 3D-modelling and ren-
dering software. Every options accessible through the Blender
GUI can be reached and modified through a Python API, en-
abling us to entirely control the simulation with scripts.

The framework can be decomposed in two steps : first the
generation of the tree or plant models, then a rendering script.

1Source code available at https://github.com/tduboudi/IAMPS2019-
Procedural-Fruit-Tree-Rendering-Framework

Figure 1: Samples of synthetic oranges (top) and apples (bot-
tom) with di�erent lightning conditions and rendering qualities.

It mainly contains a animation loop, such as that each time-step
is responsible for the rendering of one image (and a semantic
segmentation map, corresponding to the ground truth label),
di�erent from the previous ones.

Tree models are generated following the rules of Weber and
Penn [6] using an existing Blender tree generation add-on, con-
trolled by the Python generation script. It defines a number
of parameters such as the branching frequency, the decrease in
the radius of trunks and branches, the overall direction of the
branches (up or down), the ratio tree height/branches length,
etc. The fruits and the leafs are randomly and uniformly added
upon the naked tree following defined densities.

The camera movements has to be defined in the rendering
script, in which position and orientation of the camera should
be directly provided at each time-step. We usually use a new
random position and orientation at each iteration, such that
the camera is globally pointing toward the models (see Fig.2).
While it has to be noted that the camera trajectories do not have

1



T
O

Ce Ci

Figure 2: Schema of the camera point of view generation.
Camera origin O and target point T are uniformly picked from
respectively the hollow external cylinder Ce and the internal
cylinder Ci (centered around the model).

to be continuous, we can also create robotic-like continuous
trajectories toward branches on a tree. In addition, depth of
field and rendering-engine parameters (e.g. number of rays
for the ray-tracing engine) can be randomly modified within a
certain range every time-step.

Background and lightning are also controlled in the render-
ing script, and can be easily changed every few time-steps to
generate diverse images. This is a much needed feature allow-
ing Domain Randomization, known to be e�cient in reducing
the Reality Gap encountered when transferring deep neural net-
works from simulation to the real world [7]. In order to have
complex backgrounds we use freely available spherical HDRIs
(high-dynamic-range 360° images), which control the lightning
and the background objects. The tree models are placed in the
center of the HDRIs.

3 Results and Discussion
Overall, the rendering of one pair of images (512x512 pixels,
raw and ground truth for semantic segmentation) is fairly quick
with ⇠[10s:30s] with GPU-rendering (NVIDIA GTX 1080).
Fig.1 illustrates di�erent possible variations for the scene gen-
eration (e.g. fruits, light) and the quality of the rendering.

4 Conclusion and Future Work
We designed a framework for semantic segmentation and object
recognition field related to robotics fruit harvesting problems.
It allows a quick and e�cient fruit trees scene generation with
parametrized variations, thus producing labelled images em-
bedding a Domain Randomization aspect.

We aim to extend our framework to reproduce the variations
occurring during the lifetime of the fruits and tree. For instance,

an implementation of the fruit senescence and decay [8] unlocks
the training of mature fruit picking robot and disease detection
systems. We also plan to improve the photo-realism of the
simulated image by using a Generative Adversarial Network as
in [9], allowing to keep the rendering time needed quite low.
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(ANR), through the ARES labcom (grant ANR 16-LCV2-0012-
01) and by the CHIST-ERA EU project "Learn-Real".
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Estimation of sugar beet resistance to Cercopora Leaf Spot disease using UAV 
multispectral imagery 

Sylvain Jay1 , Alexis Comar2 , Rafael Benicio2, Nicolas Henry3, Marie Weiss1 and Frédéric Baret1 

1 INRA UMR 114 EMMAH, UMT CAPTE, Domaine Saint-Paul, Site Agroparc, F-84914 Avignon, France 
2 HIPHEN SAS, 22b rue Charrue, 84000 Avignon, France 

3 Florimond Desprez, 59242 Capelle-en-Pévèle, France 

 
Abstract 

 
Cercospora Leaf Spot (CLS) disease can greatly affect sugar beet yield, thus requiring the selection of 
resistant cultivars. In this study, we propose a methodology based on UAV multispectral imagery acquired 
after disease inoculation to estimate sugar beet resistance to CLS. Using a large data set including three 
years and two sites, we show that exploiting the temporal dynamics of green fraction allows us to predict 
cultivar resistance with an error of 15 %, without requiring visual scoring. This is promising in the 
perspective of large field phenotyping experiments, where thousands of microplots have to be compared. 

Keywords: Cercospora Leaf Spot, Field phenotyping, Remote Sensing, Sugar beet, UAV. 

1 Introduction 
Cercospora leaf spot (CLS) caused by the Cercospora 
beticola Sacc. fungus is one of the most damaging foliar 
diseases for sugar beet (Beta vulgaris L.) crops, moderate 
infestation inducing losses of around 1 t/ha and up to 30% 
in recoverable sucrose [1]. This fungus causes increasing 
necrosis, ranging from a few brown spots for the earliest 
stages to fully necrosed plants for the latest stages. Current 
solutions to limit CLS influence include the use of 
fungicides and the selection of resistant cultivars. These 
solutions require assessing CLS severity along the crop 
growth, which is usually performed visually by experts. 
However, this procedure is subjective and time-consuming. 
On the other hand, the use of optical sensors embedded on 
unmanned aerial vehicles (UAVs) appears as a promising 
alternative to reach the required accuracy, reproducibility 
and throughput. However, despite an increasing demand, 
there are still few studies focusing on the assessment of 
cultivar resistance to plant diseases under natural field 
conditions with a large number of cultivars, as required for 
field phenotyping experiments. 
 In this study, we exploit UAV and ground 
measurements collected over sugar beet microplots to 
develop a method based on the dynamics of normalized 
difference vegetation index (NDVI) and green fraction (GF) 
for assessing resistance to CLS. Data and methods are 
presented in Section 2. Results are presented and discussed 
in Section 3, and conclusions are drawn in Section 4. 
 
2 Material and methods 

                                                           
1 http://www.hiphen-plant.com/our-solutions/airphen/ 

a. Data acquisition 
Field experiments were conducted in Castelajoux, France in 
2016 (80 microplots) and 2017 (1374 microplots), and in 
Agen, France in 2018 (1522 microplots). For each year, 
several cultivars were considered. The microplots were 
generally submitted to the same modality, i.e., they were 
inoculated with Cercospora Beticola at the beginning of 
July and no fungicide was applied afterward. For each 
microplot, CLS disease severity was evaluated visually by 
an experienced expert 4 to 6 times along the disease 
development, using a scoring scale ranging from 1 (no CLS 
spots) to 9 (every leaf is necrosed). The area under the curve 
was computed by integrating the dynamics of these 
instantaneous scores over the considered period (in growing 
degree days), providing the Area under Disease Progress 
(ADPC) variable [2] used to assess cultivar resistance. 
 UAV multispectral images of microplots were acquired 
at 5 to 8 dates after disease inoculation using an AIRPHEN1 
camera sampling the reflected radiation in 450, 530, 570, 
675, 730 and 850 nm spectral bands. The image spatial 
resolution was 0.9 cm in 2016 and 2.3 cm in 2017 and 2018.  
Multispectral bands were then co-registered, geometrically 
and radiometrically calibrated as described in [3]. 
b. Estimation of disease resistance from UAV 
The dynamics of NDVI [4] and GF were used to estimate 
instantaneous disease scores and, in turn, ADPC. Here, GF 
was estimated by thresholding the VARI [5] index image, 
as described in [3]. To decrease the influence of variations 
in canopy structure among microplots of similar disease 
scores, we compared the results obtained with three 
dynamics for both NDVI and GF: (i) raw dynamics, (ii) 
dynamics normalized by the maximum value, and (iii) 
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dynamics normalized by the maximum value and values set 
to 1 before this maximum. These dynamics were finally 
resampled to the dates of visual scoring, resulting in 480, 
5496 and 7610 samples for 2016, 2017 and 2018, resp.. 
NDVI- and GF-based variables as obtained from the three 
dynamics were non-linearly related to instantaneous disease 
scores using Gaussian Process regression. Estimated scores 
were then integrated to estimate ADPC for every microplot, 
similarly as for visual scores (Section 2.a). The estimation 
accuracy was evaluated using a cross-validation process, 
using two years for calibration (randomly selecting the 
same number of samples for both years) and the remaining 
year as an independent validation set, and repeating this 
procedure three times to use every year for the validation. 
 
3 Results and discussion 
When considering raw dynamics, similar results are 
obtained using NDVI and GF, with root mean square errors 
of prediction (RMSEP) of about 24 %, 38 % and 10 % for 
2016, 2017 and 2018, resp. (Table 1). 

Significant improvements are generally observed when 
normalizing the dynamics by the maximum values. In this 
case, NDVI performs better for 2016 (RMSEP = 18 %), 
while GF performs better for 2017 and 2018 (RMSEPs of 
24 and 7 %, resp.). Normalization allows us to take into 
account differences in canopy structure between years that 
may be due to differences in soil and weather conditions.  

For every year, the best results are, however, obtained 
when exploiting the GF dynamics normalized by its 
maximum value and with GF values set to 1 before this 
maximum. This configuration allows us to achieve 
RMSEPs of 17, 22 and 7 % for 2016, 2017 and 2018, resp., 
which corresponds to an overall RMSEP of 15 % (Figure 1). 
Setting the normalized dynamics to 1 before the maximum 
value allows us to exploit the temporal information and to 
limit confusions between GF variations due to crop growth 
(increase in GF until the maximum) and those due to disease 
development (decrease in GF after the maximum). The 
superiority of GF compared to NDVI may be due to the 
differences in soil properties or leaf chlorophyll content 
across sites. Such differences do not relate to the disease 
severity, still they affect the NDVI values while keeping the 
GF values unchanged. 

 
Table 1: RMSE (in %) obtained for the estimation of ADPC with 

the three dynamics of the two remote-sensing variables 

considered. For each year, the best results are in bold. 

Remote-sensing 
variable 

Dynamics type 2016 2017 2018 

NDVI Raw 24 37 11 
Normalized 18 28 12 
Normalized + 1’s 25 24 13 

GF Raw 24 39 10 
Normalized 21 24 7 
Normalized + 1’s 17 22 7 

 

 

 
Figure 1: ADPC estimation results obtained with the GF dynamics 

normalized by the maximum value and with GF values set to 1 

before this maximum. 

4 Conclusions 
In this study, we demonstrate the potential of UAV 
multispectral imagery to assess sugar beet resistance to CLS 
disease. An overall ADPC estimation error of 15 % is 
obtained based on the dynamics of GF. As such 
methodology does not require subjective and time-
consuming field measurements, it offers promising 
perspectives for field phenotyping experiments. 
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Abstract

Polarized transport of signaling molecules, such as the phytohormone auxin, is a core process for the
establishment of gradients involved in the patterning of multicellular plant tissues. Cell-to-cell polarity
of transport can result from the di�erential deposition of e�ux carriers on the membranes at the interface
between cells, as for the pin-formed1 (PIN1) auxin transporter. Quantifying such sub-cellular information
in whole organ microscopy images constitutes a real challenge. In this work, we propose a method that
computes polarities at the level of cell-to-cell interfaces starting from standard resolution confocal
images and using a 3D geometric representation of cell walls. A robust estimation of spatial fluorescence
distribution around cell walls allows quantifying polarity with a fair level of confidence, and opens the
way for the automated analysis of polar transport at tissue scale.

Keywords: Quantitative Image Analysis, Confocal Microscopy, Triangle Mesh, Polar Transport.

1 Introduction
Cell polarity is a fundamental feature in developmental bio-
logy, where symmetry breaking is essential for the formation
of patterns in multicellular organisms. In plants, along with
anisotropic cell elongation or asymmetric cell division, polarity
manifests notably by a preferred directionality in the intercel-
lular flow of signaling molecules. In the preeminent case of
auxin, polarized transport, mediated by the PIN e�ux carriers,
has been shown to play a determinant role in the establishment
of early embryo apico-basal axis [1], aerial organ arrangement
(phyllotaxis) [6], or leaf adaxial-abaxial axis [7]. It is the local-
ization of such proteins at the plasma membrane on a preferen-
tial side of the cell that will increase the export of molecules to
neighbor cells in a given direction, and locally orient the flow.

Live-imaging microscopy is used to monitor levels of trans-
porters in a developing tissue, and to assess polarity of transport
at cell-level. It is generally admitted that intracellular gradients
mark the polarity of a transporter, and without reference for the
cell wall position, the visual cue of a crescent shape on one side
of a cell in 2D projections is often used to manually estimate cell
polarities. However, in confocal images of transporters where
the 0.1-0.2µm resolution exceeds cell wall thickness, it is im-
possible to visually assert which cell hosts the fluorescence, and
ultimately to determine polarity. Recent works begin to rely on
co-imaging to estimate the relative position of transporters and
cell wall intensity peaks in 2D along user-specified lines [7].

Here, we propose a fully automated method to estimate polar-
ities of transporters in confocal images using a cell wall marker
reference and going beyond voxel resolution through the use of
geometric representations detached from the image grid.

Figure 1: Wall-level quantification of transport polarity: 3D
segmented image slice (a), projected wall meshes (b), locally
orthogonal cylinder placed at each vertex of the wall and voxel
projection (c), precise location of the cell wall intensity mode
(d), left and right estimation of transporter levels and statistical
polarity decision (e), tissue level polarity vectors (f), decorre-
lation between visual interpretation of intensity crescents and
quantitative polarity estimation (g).
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2 Wall polarity quantification
Our starting point consists of a 3D segmented image of mul-
ticellular tissue (Figure 1a), typically obtained by applying an
automatic seeded watershed algorithm to a confocal stack of
membrane or cell wall marker, where seeds can be detected
as regional minima of signal [3]. Our polarity estimation algo-
rithm has two steps : the extraction of cell walls as 3D triangular
meshes, and the estimation for each wall of a polarity vector
through the analysis of the local fluorescence distribution.

We use smooth triangular meshes to represent accurately the
cell walls and limit the sensitivity to noisy segmentation and to
image resolution. To obtain such meshes, we apply the March-
ing Cubes algorithm [5] to the binary image corresponding to
each labelled cell region in the segmented image, and keep the
common vertices for each pair of neighbor cells, using the tri-
angulation of either of the two to define mesh elements. Those
meshes undergo a phase of triangle decimation [4] and isotropic
remeshing [2] to obtain a regular surface (Figure 1b). On the
triangular mesh, we estimate the normal vectors at each vertex
and the area of each triangle that allows us to estimate the total
area of the interface between the two cells.

We consider that the transporter polarity vector of a given
cell interface, i.e. whether the e�ux carriers orient the flow
of molecules towards one cell or the other, is given by the
di�erential of concentration of transporters between the plasma
membranes. We access this information through the di�erence
of fluorescence intensity in the image on either side of the cell
wall marked by the wall-marker intensity around each mesh.

We generate a set of 3D cylinders, placed at each vertex in
the direction of the normal, in which we will sample the image
signals. We position the image voxels lying inside this cylinder
on an 1-dimensional axis by assigning them the signed abscissa
dv of their orthogonal projection on the main axis (Figure 1c).
The position dv = 0 (corresponding to the mesh vertex sup-
porting the cylinder) might actually have shifted from the ac-
tual cell wall in the consecutive processing steps (segmentation
artifacts, meshing simplifications, smoothing approximations).
To account for this, we locate precisely the abscissa d0 of the
mode in the 1D wall-marker image intensity distribution by
the least-squares fitting of a Gaussian-shaped function. Then,
transporter levels are quantified on either side of this reference,
up to a distance dmax , by computing the average voxel intensity
within the two sub-cylinders (Figure 1d).

By performing this two-sided estimation on every cylinder
defined by the wall triangular mesh, we end up with two parallel
transporter signal distributions. We test statistically whether
these distributions can be seen as significantly di�erent by an
ANOVA test, and decide that a polarity exists when the test
gives a p-value < 0.05 (Figure 1e). In such case the polarity
vector is given by the di�erence between the medians of the
two distributions multiplied by the normal vector to the wall,
otherwise it is null (Figure 1f).

3 Results & Discussion
We have applied our method to root images expressing fluores-
cent PIN2 and with stained cell walls using propidium iodide
(PI). It is known that, in root epidermal cells, auxin transport
is polarized shootward, and our method retrieves this expected
polarity in all cells. We also studied the influence of spatial res-
olution and showed similar PIN1 polarities between shoot apical
meristem (SAM) tissues imaged at 0.1µm and 0.2µm resolu-
tions. Finally, a study on 16 SAM images reveals highly pre-
served patterns of PIN1 polarities, indicating that our method
provides consistently reliable results at tissue scale.

Additionally, this 3D reconstruction of PIN1 polarities
demonstrated that the crescent-shape often thought to indicate
polarities in cells does not always correlate with polarities and
can thus be sometimes misleading (Figure 1g). The method
opens the way for a large scale study of accurate polarity dy-
namics at the scale of a whole tissue.
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Abstract

How cellular mechanisms are integrated at the organ scale to orchestrate shape changes during morpho-
genesis remains largely unknown. Significant insights can be guaranteed by systematically quantifying the
spatiotemporal evolution of 3D cell parameters in relation with the organ shape during the development.
We developed a pipeline for multiscale statistical parametric maps of individual leaves, which provides
an integrative view of factors involved at the cellular and the organ scale during leaf morphogenesis.

Keywords: Surface Parameterization, 3D Registration, 3D Atlasing, Leaf Morphogenesis.

1 Introduction

Because of the presence of a cellular wall, plant morphogen-
esis essentially results from the balance between di�erential
cellular growth and division. This spatiotemporal regulation
induce morphological and topological changes that contribute
to the evolution of the organ shape. One challenge in develop-
mental biology is to detect the emergence of cell populations
with distinct characteristics that accompany the transformation
of organ shape. Several studies have quantified 3D cell pa-
rameters in order to understand how cellular mechanisms con-
tribute to organogenesis [1]. In particular, using leaf to study
plant organogenesis, a framework was proposed to systemat-
ically quantify the cellular growth by mapping computed 3D
cell parameters over the organ surface, thus providing a way
to visualize and identify domains with distinct characteristics
during development [5]. However, inter-individual variability
at the cellular scale between organs at a given stage of devel-
opment [7] can hide meaningful cellular growth patterns. To
address this issue, a pipeline was proposed to integrate individ-
ual maps into statistical atlases showing the spatial distribution
of average cellular parameters over average organ shapes [6].
A remarkable feature during aerial plant organs development is
the reproducibility of their shape and size despite the heteroge-
neous growth that occurs at the cellular scale [3, 7]. Therefore,
it is necessary to integrate organ shape and cell parameters of
individual leaves at the same developmental stage to quantify
their variability by providing 3D statistical maps. Based on the
approach described in [6] for organ surface parameterization
and registration, we show how we compute multiscale statisti-
cal parametric maps during development.

Figure 1: Data processing. (Left) 3D confocal image of a fixed
leaf. (Middle) Results of watershed segmentation on epidermal
cells; all sub-epidermal cells were unified into a single label.
(Right) Results of mapping cell thickness.

2 Material and Methods

2.1 Image data and measurements

Developing leaves were fixed, stained and imaged using a con-
focal microscope, thus providing the outlines of cellular walls at
the whole organ scale (Fig. 1, left). Images were segmented us-
ing a 3D watershed algorithm (Fig. 1, middle). Non-epidermal
cells were merged into a unique “sub-epidermal” label. For
each epidermal cell multiple morphological and topological
parameters were measured including size, shape and the spatial
organization of cells. As an illustration, Fig. 1, right shows
the 3D map of epidermal cell thickness for an individual leaf.
Parameter values were projected on the 3D leaf surface and
displayed using a color look-up-table. In order to quantify the
organ deformations during the development, we computed the
mean surface curvature at each point within a neighbourhood
of a radius of 30µm.

2.2 Overview of the pipeline

Our parametric statistical maps are computed based on the fol-
lowing pipeline that proceeds in three steps: (1) computation

1



Figure 2: Overview of the surface parameterization method.
(A) Leaf centered coordinate system computation defined by
two axes: a lateral axis ( Red) and a longitudinal axis (Green).
(B) Parameterization of leaf surface using a quadrangular mesh.

of a leaf centered coordinate system based on the approach de-
scribed in [6] (Fig. 2, A), separating the leaf surface into four
quarters; (2) parameterization of each quarter (Fig. 2, B); (3)
point-to-point registration and integration of parameters of in-
dividual leaves into prototypical leaf surface. In this paper, we
describe how we compute the prototypical leaf surface and also
shows how parameters of individual leaves are integrated and
statistically mapped into prototypical leaf surface.

2.3 Prototypical shape computation and statis-

tical parameters mapping

The surface parameterization is based on a standardized coor-
dinate system and results in parameterized surfaces with the
same number of points, which allow point-to-point registration
[4]. Let Sk

i = {xki (u, v), yki (u, v), zki (u, v)} be the quadrangu-
lar surface of the k th (k 2 {1, . . . , 4}) quarter in the ith leaf.
The registration of N leaf surfaces is obtained by iteratively
combining averaging and pairwise registration to the average
shape in order to determine for each leaf i the rigid trans-
formation Ti that minimizes the following error function [4]:
E(T1, ....TN ) =

Õ
i> j

Õ4
k=1 k Ti(Sk

i ) � Tj(Sk
j ) k2. The prototyp-

ical shape was obtained by averaging the four quarters across
the registered leaves. Statistical parameters at corresponding
vertices in the individual surfaces are computed for each corre-
sponding vertex of the prototypical shape.

3 Results

Figure 3 illustrates the mapping of parameters at multiple scale
for the cellular (average and variability of cell volume) and the
organ level (surface curvature) over the prototypical leaf shape
computed from five individual leaves at the same developmental
stage with size between 350 and 400 µm. The integration of the
individual measures into the average representation reveals a
well delineated pattern of cellular parameter variations over the
leaf surface. More particularly, the variability representation
of cell volume reveals a pattern of cells at the distal part of
leaf which also correspond to the regions where cells start to
di�erentiate [2]. For each computed parameter, such a surface
with projected values can be generated, thus providing a way to

visualize and compare various cell and organ shape parameters
during leaf development.

Figure 3: Surface rendering of prototypical leaf shape with a
color rendering of average/variability cell volume and surface
curvature values.

4 Conclusion

In this paper, we described a strategy to integrate multiple pa-
rameters at the organ and the cellular scale into 3D statistical
maps. The obtained statistical representations are representa-
tive of the populations of shapes and provide atlases that will
allow to correlate cell growth to the evolution of organ shape
during its development. We believe these statistical atlases
will be useful to extract robust principles and to elucidate the
multiscale processes that subtend organ morphogenesis.
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Abstract 
 

Quantitative image analysis of plant tissues is fundamental to better understand the grinding performance 
or the microbial or enzymatic degradability of plant materials. The differences in size and shape between the 
stems complicates the integration of results. We propose a complete workflow for computing a statistical 
parametric mapping of cellular morphology. The workflow comprises the computation of a reference space, 
the projection of individual images into the reference slice, and the group-wise analysis of the registered images.  

Keywords: Plant Histology, Parametric Mapping, Granulometry, Image fusion, Groupwise registration.

1 Context 

Crop species like maize (Zea mays L.) are of increasing 
interest for cattle feeding or for production of bioethanol and 
biomolecules. Several mechanical, biochemical and/or 
enzymatic processes are involved to transform the raw 
material, mainly composed of the stem and the leaf cell walls, 
into energy or fuel.   

The plant anatomy seems to play a key role in the plant 
biomass processes, and several investigations on stem 
histology have been performed [1,2]. However, the spatial 
distributions of quantitative features remain complicated to 
compare due to the differences in size and shape between the 
stems. 

A strategy is to project all image data onto a common 
reference. Such an approach was developed for medical 
imaging [3,4], but few approaches exist for plant histology. In 
this study, we propose a complete workflow for statistical 
mapping of plant histology that comprises the computation of 
the reference slice from a collection of individual slices, the 
projection of each individual slice into the reference slice, and 
the group-wise analysis of the images after registration. 

2 Material and methods 

Ten maize internodes of the maxxis accession were sampled 
under the ear. Internodes were divided into twelve slabs of 
approximately equal thickness. Slab sections were extracted 
in either transversal or longitudinal directions, resulting in 
sixty stem cross-sections. Images were obtained using in-
house macroscopy acquisition device, resulting in gray-
level images with a resolution of 3.6 microns per pixel. 

Parametric mapping of the cellular morphology was 
computed using localized granulometry analysis (Fig. 1). 
The contour of sections were segmented manually to take 
into account missing parts of sections. Centroidal Voronoi 
Diagrams with fixed number of germs were generated 
within the slice contours [5], resulting in convex regions of 

interest (Fig.1-b). Gray level granulometry curves obtained 
with mathematical morphology were computed for each 
region (Fig. 1c). An average cell size was associated to each 
region of interest, resulting in a parametric map of the 
typical cell size (Fig. 1d). 

 
Figure 1. Parametric mapping of cellular morphology using 
gray-level granulometry. (a) Original image. (b) 
Partitioning of the slice into regular ROI. (c) Granulometric 
curve for each ROI. (d) Color-coded representation of the 
map of the typical cell size. 

 
To compute the reference contour Cref, the contour Ci 

of each slice was first manually delineated from images.  
Contours were centered, aligned to have vertical axis of 
symmetry, and rescaled to have the same area. The 
reference contour was then computed as the minimizer of 
the sum of the squared distances to other contours. 

                   𝐶𝑟𝑒𝑓 = arg min
𝐶

∑ 𝑑2(𝐶, 𝐶𝑖)
𝑖

                     (1) 

The distance between two polygons is obtained by 
computing for each vertex of the reference contour the 
distance along the local normal to the individual polygon. 
The optimization procedure was performed by using an 
arbitrary contour as initial reference, and iteratively 
updating the coordinates of its vertices using eq. (1) until 
stability (Fig. 2a). 

Once the reference contour is computed, each 
individual slice image must be transformed such that the 
contour Ci of the slice is superimposed with the reference 
contour Cref. As the results requires interpolation within the 
individual image, we look for the reverse transformation 
that projects the reference contour on the individual 
contour.  
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Figure 2. Computation steps for statistical parametric 
mapping of cellular morphology. (a) Computation of the 
reference contour from the collection of contours. (b) 
Projection of individual maps on the reference contour. 
 
The transformation can be decomposed into an affine part 
that normalizes global changes, and a local model. Several 
local transformation models were investigated, including 
BSpline, polynomial, and radial scaling. Each family of 
transformations was parametrized by a parameter vector. 
The optimal transform was obtained by a applying the 
Nelder-Mead simplex optimizer over the parameter space. 
The optimization toolbox from Matlab was used. 

Transformed images were obtained by iterating on 
pixels in the reference space, computing their projection 
within the individual image by using the reverse 
transformation, and interpolating within the individual 
image. Registration was applied both on the original images 
to validate the method, and on the parametric maps of 
cellular morphology (Fig. 2b). 
 
3 Results 

A parametric map of the cell size was obtained for each 
individual image (Fig. 1d). They were consistent with visual 
observation: large cells are located in the parenchyma, 
while small cells are located on the boundary and on the 
vascular bundles. A large heterogeneity could be observed, 
as well as variability between the slices (Fig. 2b). 
 An affine transform followed by a radial scaling model 
was chosen for registering images. The visual inspection of 
the reference contour registered on each individual contour 
showed that good superposition could be obtained, while 
maintaining smooth deformations at a local scale (Fig. 3a). 
 After registration, the parametric maps of cell 
morphology can be superimposed and group-wise analyzed. 
The statistical parametric map of cellular morphology 
obtained by computing the pixel-wise average shows the 
spatial distribution of the typical cell size within the 
reference section (Fig. 3b). Some results are similar to the 
ones observed on an individual image: small cells are 
located on the periphery of the slice, and large cells in the 
parenchyma. The vascular bundles are not visible anymore 
due to the global averaging. The cell size seems to be 
slightly larger in the middle of the parenchyma than in its 
periphery. It was also noticed that the layer of small cells on 
the sclerenchyma appears to be thinner on the lower part of 
the slice. 

 

 
Figure 3. Results of image deformation. (a) Representation 
of the deformation computed for an individual image. (b) 
Statistical map of the cellular morphology obtained by 
integrating all the registered parametric maps. 

 
4 Conclusions  

We developed a framework for computing statistical 
parametric maps of cellular morphology from collections of 
images obtained on different stem sections. Results are 
consistent with visual observations, and make it possible to 
compare parametric mappings obtained with different 
experimental factors (growing conditions, genotypes, 
position within the internode…), while taking into account 
the biological variability. Future works aim at investigating 
the variations of parametric mappings of cell morphology 
with the position within the internode.  

Statistical parametric mapping of plant histology opens 
new perspectives for a global analysis of collections of 
samples obtained on several individuals. Another 
perspective will be to compare statistical maps obtained 
from different imaging modalities, different stains, or 
different image analysis strategies [1,2]. Correlative 
imaging strategies can therefore be envisioned even if 
images are not acquired on the same samples. 
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Abstract

Living organisms produce organs with shapes both stereotyped and a�ected by variability. Further, final
organ shape is the result of biological mechanisms integrated in space and time. Morphogenesis analysis
thus requires reliable dating system. We propose to use organ size to trace back to its age. This allows
the conjoint analysis of organs sampled in di�erent organisms, and the comparison of leaf development,
e.g., from di�erent genotypes. We analyzed leaf shaping in the plant Arabidopsis thaliana. Our results
suggest that morphogenesis of leaf blade and serrations are, at least partially, decoupled.

Keywords: Leaf Shape, Leaf Margin, Plant Growth, Multi-scale Analysis.

1 Introduction
The proper analysis of organ morphogenesis requires accurate
dating of the organ itself and of significant events during devel-
opment, e.g., the emergence of a tooth at the boundary. Here
we propose a strategy to date any organ based on its size. For
this, we determine the initiation date of any organ during the
organism lifetime, and we model the growth dynamics using
a function relating organ size and age. Thus, it is possible to
compute the age of an organ by considering its size. Then,
individual organs can be registered in time and di�erent organs
compared, e.g., coming from di�erent genotypes. We also pro-
pose to detect and date the development of important features
during growth, like the appearance of particular shape patterns.
We illustrated this strategy in two dimensions to analyze the
leaf development. Our results showed that di�erent teeth, i.e.
successive ones in a given leaf or the same one in di�erent
leaves, follow very similar development processes, and we also
revealed subtle di�erences between them.

2 Dating leaf growth dynamics
Here, we used leaves that appear successively in the rosette of
the plant Arabidopsis thaliana. We consider that leaves are
ordered according to their apparition, so that a leaf of rank
i (leaf i) refers to the i-th leaf that emerged. We also used
this classification to order the teeth appearing successively: the
tooth of rank i is the ith to emerge.

We first propose a means to compute, for any individual leaf,
the age of the organ from its initiation. For this, we compute

Figure 1: Dating the leaf. (A) Leaf primordia are counted at
di�erent dates and a polynomial function is fitted. (nitiation
of leaf 11 ⇡ 15.6 days. (B) The relation between leaf length
and plant/leaf ages is modeled with a Hill function. (C) The
criterion to detect tooth initiation is a minimum height of 10µm.

the function that links its age to its size, typically the blade
length. First, plastochron measures are performed to determine
the initiation date of organs (Fig. 1A). Next, based on the pairs of
measures plant age-leaf length, we model the function relating
plant age to leaf blade length with a Hill function (Fig. 1B).
Then, we obtain the relation between leaf age and length.

To analyze leaf serrations, we also propose to date the emer-
gence of individual teeth. For this, we set a height threshold
that determines the tooth initiation time (Fig. 1C).

3 Arabidopsis thaliana leaf shaping
Leaves in the rosette have di�erent overall sizes and shapes,
and present di�erent degrees of serration at the margin. First

1



Figure 2: Growth dynamics of leaves in the rosette of Arabidop-
sis thaliana. A: leaf length as a function of leaf age for leaves
of odd ranks between 3 and 11. B: leaf age as a function of leaf
length. C: comparison of leaves of ranks 3 and 11 with either
the same length L or the same age A.

leaves have rather round shapes with few serrations, while it
becomes more and more elongated with more teeth as the rank
increases. We focused here on leaves of odd ranks going from
3 to 11 presented in a previous work [1].

Results are displayed in Figure 2. Di�erences in growth
kinetics between the ranks clearly appeared (Figs. 2A and 2B).
Final blade length are significantly di�erent (the higher the rank,
the longer the blade), while, during early phases, the order is
reversed (higher ranks leaves are smaller than lower rank ones).
These di�erences could be explained by a trade-o� between cell
proliferation early in the development and cell di�erentiation
that occurs later on. High rank leaves could thus stay longer
at a proliferation state and then initially grow slowly, while
because they generated more cells, their final shapes are bigger
than low rank leaves. The necessity to take real leaf age instead
of organ size as a proxy of time was illustrated in Fig. 2C, which
shows that two leaves of the same size may have significantly
di�erent ages. Our results illustrated the necessity to consider
the whole development to fully characterize the organ shaping.

Next, we compared serration development at the margin
(Fig. 3). When expressed according to leaf length (Figs. 3B
and 3E), morphological measures of successive teeth in the
same leaf suggested that they follow distinct growth trajectory.
Yet, with appropriate time measure (Figs. 3CD and 3FG), it
appeared that teeth grow with similar dynamics, both in width
and height. These results emphasized subtle di�erences, e.g.,
the fact that growth in height stops earlier in lower rank teeth.

Second tooth morphology was evaluated in leaves with dif-
ferent ranks. As for tooth width (Figs. 3H), we showed that
they grow at the same rate in all leaves. Conversely, they grow
di�erently in height (Figs. 3I), and the tooth is more pointed in
higher rank leaves (Figs. 3J).

4 Conclusions
In conclusion, we illustrated here that the proper dating of the
development allows to finely analyze the shaping of organs, both
at global (whole organ) or local (serrations) scales. In particular,
we can reveal subtle events that occur during the organ growth.

Figure 3: Morphological serration parameters. B-G: tooth
width (B-D) and height (E-G) in individual leaves (dots) and
in leaf growth trajectories (curves), plotted either against leaf
length (left), age (center) and tooth age (right). H-J: second
tooth measures for di�erent leaf ranks according to tooth age.
H: tooth width; I: tooth height; J: height/width.

Appropriate dating also allows the integration of individual or-
gans sampled in di�erent organisms, and the comparison of the
developments of di�erent organs. Lastly, it should be pointed
out that growth dynamics functions have to be recomputed each
time for di�erent leaves (ranks/genotypes/growth conditions...).
However, this procedure is rather straightforward, and this is
commonly done in our lab.
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Abstract 

 
Image assisted phenotyping plays a major role in future plant breeding. We introduce a new method for 
characterization of wheat vitality, based on images of 12 winter wheat varieties and captured with 
standard RGB cameras under field conditions. An automated image processing pipeline using machine 
learning approaches quantifies dead, chlorotic and vital pixel area of the plants. Measuring large areas 
within plots we improve phenotyping precision and representativity and accelerate phenotyping 
throughput. The ability to import, store and visualize plant vitality data and corresponding images within 
our new information system CropWatch enables breeders to directly benefit from image based 
phenotyping. 

Keywords: Phenotyping, Wheat Vitality, Image Processing, Machine Learning, Information System 

1 Introduction 

Image assisted phenotyping is considered a key technology 
in plant science [1], opening opportunities for improved 
selection of breeding material and development of superior 
elite varieties [2], finally leading to improved agricultural 
productivity [3]. During the vegetation, several biotic and 
abiotic factors, such as drought, heat and malnutrition 
affect wheat vitality. These factors result in a proportion of 
vital to stressed regions, from green to yellow to brown 
parts of the plant, especially its leaves (Fig.1). 
Here, we introduce a method to measure this plant vitality 
based on RGB-images. 

2 Material and Methods 

Expecting differences in their vitality, we selected 12 
European elite wheat varieties registered between 1968 
and 2014. 
Images were captured from 2m distance to canopy with a 
standard RGB camera (Canon EosD1200). Each image 
captured covers approximately 1m² per plot, with an edge 
length of about 0.25mm per pixel, additionally including a 
color reference chart (X-Rite ColorChecker Classic).  
The camera was mounted to our tractor based field 
phenotyping platform, which is covered with translucent 

 
fabric, minimizing and homogenizing shading, but still 
allowing light to pass into the scene, in order to forgo 
artificial light sources. To analyze images, an image 
processing pipeline (IpP) was developed in Python 3.6. 
The IpP directly accesses a folder structure where images 
and their geographic(geo) coordinates are stored. 
After automated import of images, IpP runs over following 
steps: Rescaling to exclude distorted image areas - 
Generation of feature matrix - Classification of plant and 
non-plant pixels - Masking of non-plant pixels - Selection 
of hue channel from HSV color space - Generation of 
color clusters - Resulting trait: Plant pixel area (%) per 
color cluster - Export of results as csv-file. 
After processing in IpP, resulting data, images and the 
corresponding geo-coordinates are imported to our newly 
developed data management and information system 
CropWatch.  

Figure 1 Magnified section from an unprocessed image 
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Table 1 Classification result for plant and non-plant pixels 

3 Results and Discussion 

With our phenotyping platform we are able to capture our 
trial with 96 plots and 3 images per plot in 1 hour. During 
vegetation period we repeated this on 2 locations every 2 
weeks. 
Due to the fabric the images showed sufficient contrast 
and homogeneous shading (Fig.1), thus minimizing 
environmental effects. 
The computationally most intensive and obviously crucial 
step of processing was the reliable identification of plant 
pixels. Classification of plant and ground was achieved 
using a support vector machine. Images were transformed 
to a 27-dimensional feature matrix, including pixelwise 
neighborhood statistics and color features, with resulting 
9 dimensions of significant impact on the classifier. We 
performed tests comparing classifiers, finally selecting a 
random forest classifier with 100 decision trees providing 
the best classification result. According to the confusion 
matrix, we achieved an overall classification accuracy of 
more than 99% (Tab. 1). 
According to an earlier approach with single wheat leaves 
captured without environmental influences by a document 
scanner, we clustered the plant pixels using HSV color 
spaces hue channel. While 0°-4° was not used, to exclude 
artificial or sensor errors in the images, 5°-60° was defined 
as "Dead" (red-brown-yellow), 61°-75° as "Chlorotic" 
(yellow,greenish-yellow) and 76°-200° as "Vital" 
(yellowish-green, green and blueish-green). 
For the 12 wheat varieties, we measured significant 
variation in plant pixel area with 5-9% for "Dead", 17-25% 
for "Chlorotic" and 65-78% for "Vital" pixel area (Fig.2). 
This demonstrates that selection of vital or stress tolerant 
wheat varieties will be possible with our method.  
As we capture 3 images per plot, resulting in nearly 3 m² 
covered area (up to 25-50% of a normal breeding plot), 
precision, representativity and therefore reliability of such 
measurements highly increases in relation to point 
measurements with handheld devices or traditional 
scoring.  

Due to the integrated color reference, we were able to 
homogenize images within and over different dates, 
allowing us to do comparable time series of color 
development during the whole vegetation period.  
With the web-based data management system CropWatch, 
we are able to import, store and visualize all kinds of raw 
and processed images, as well as the extracted plant color 
parameters. These can be shown either as customized data 
tables and figures, or visualized on maps due to geo 
referencing of data. Additionally, it is possible to check 
conspicuous data in the corresponding original image. 

4 Conclusion  

Climate change effects cause intensive efforts in plant 
breeding to select more vital and stress tolerant genotypes 
for adaptation to stronger variation in weather. With this 
RGB-image based method we can offer objective, precise 
and reliable measurements of plant surface vitality of 
wheat and replace subjective scorings. This is not only 
possible at one certain growth stage, but during the whole 
vegetation process, to characterize a variety regarding 
stress response or stay-green potential during maturation. 
With the current setup more than a hundred large plots can 
be covered in one hour, having the processed data 
available the next day. Compared to traditional 
phenotyping, throughput is accelerated and time and 
manual workload can be saved during the labor-intensive 
field season in plant breeding. 
The possibility to store the images and resulting color 
parameters in the data management system CropWatch, 
together with relevant agronomic data from soil, weather, 
fertilization and yield generates valuable information for 
breeders selection decisions [3]. Due to geo referencing of 
data, identification and addressing of stress hot-spots is 
possible and can enable site-specific fertilization and plant 
protection and improve precision farming techniques.  
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Abstract 

 
In order to monitor plant growth and obtain the morphology of curved leaf, a new measurement method of 
leaf morphology was proposed based on point cloud data. By using Agglomerative Nesting and cubic 
interpolation method to segment point cloud and reconstruct leaves, individual leaves morphology was 
estimated. Compared with manual measurement, leaf azimuthal angle, length, and area estimations were in 
a good agreement (R2 > 0.996). But estimation of leaf inclination angle was low-correlated due to the error 
of manual measurement. Results show that the proposed method could accurately estimate the morphology 
of curved leaves. 

Keywords: Plant Leaf Morphology, Growth Monitoring, Hierarchical Clustering, Point Cloud Data 

1 Introduction 

Plant structure is an indicator of the growth and development 
status of a plant as it continuously adjusts to a dynamically 
changing environment [1]. Leaf morphology objectively 
reflects its physiological conditions, including leaf angle (leaf 
inclination and azimuthal angles), length, and area, which is 
critical in determining the plant structure, and subsequently 
the photosynthetic productivity [2]. To improve yield and the 
adaptation abilities of plants to climate change, the plant 
growth state is assessed by measuring leaf morphology. 

Several technologies have been developed for non-
contact measurement of plant morphology, including 
machine vision [3], stereo imaging, laser scanning [4] and 
depth image [5]. Researchers have used the non-invasive 
methods to collect point cloud data of plant structure, which 
could restore the plant space surface information. But the 
current study could not solve the problem of inaccurate 
measurement of curved leaf morphology. 

In this paper, ordinary plants with curved leaves 
(Spathiplyllum) were taken as the research object. The 
proposed measurement method of curved leaf morphology 
is shown in Figure 1. The point cloud data were 
preprocessed according to the height to remove the ground 
data noise. Hierarchical clustering [6] and cubic interpolation 
methods were used to segment the point cloud and reconstruct 
leaves. Leaf morphology was estimated based on the structure 
characteristics of leaf individual leaves, which provided a 
research basis for plant growth monitoring based on machine 
vision. We also manually measured leaf morphology to 
assess the proposed measurement method accuracy of curved 
leaf morphology. 

2 Material and Methods 

The laser HIREED703A was used in this paper to collect 
point cloud data of plants. Firstly, the point cloud data were 
preprocessed according to the height to remove the ground 
data noise. Then, the hierarchical clustering method named 
Agglomerative Nesting (AGNES) [7] was adopted for leaf 
segmentation. The AGNES constructs a hierarchy of 
clusterings. Each observation is a small cluster by itself. At 
each stage, the two nearest clusters are combined to form one 
larger cluster. AGNES requires to specify input parameters: 
the number of clusters 𝑘 and clustering distance measure 
function 𝑑 given in equation (1). 
 

𝑑𝑚𝑖𝑛(𝐶𝑖, 𝐶𝑗) = 𝑚𝑖𝑛
𝑋∈𝐶𝑖,𝑍∈𝐶𝑗

𝑑𝑖𝑠𝑡(𝑋, 𝑍),                            
𝑑𝑚𝑎𝑥(𝐶𝑖, 𝐶𝑗) = 𝑚𝑎𝑥

𝑋∈𝐶𝑖,𝑍∈𝐶𝑗
𝑑𝑖𝑠𝑡(𝑋, 𝑍),                    (1) 

𝑑𝑎𝑣𝑔(𝐶𝑖, 𝐶𝑗) = 1
|𝐶𝑖||𝐶𝑗|

∑ 𝑑𝑖𝑠𝑡(𝑋, 𝑍)𝑋∈𝐶𝑖𝑍∈𝐶𝑗 ,               
                    

where 𝐶𝑖 is a cluster, X=Z is the point data. Lastly, the 
cubic interpolation method was used to fit the segmented point 
cloud of leaves. The leaf was approximated as a space surface.  

The average inclination angle was calculated by 
weighting the segmented leaf area 𝐴𝑖 using equation (2). 𝛼𝑖 is 
the angle between the main leaf vein and the horizontal plane. 
Leaf azimuthal angles 𝛽 is the angle between the main leaf 
vein and the north direction.  

 
𝛼 = ∑ 𝜔𝑖𝛼𝑖 𝑛

𝑖=1                                        (2) 
𝐴𝑟𝑒𝑎 = 𝐴/𝑐𝑜𝑠𝛼                                     (3) 
𝐿 = 𝑙/𝑐𝑜𝑠𝛼                                             (4) 
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Plant point cloud

Segment the point cloud and reconstruct leaves

Individual leaves

Estimation and manual measurement result correlation 

 
 
 

The weight 𝜔𝑖 = 𝐴𝑖
𝐴

. 𝐴 is the area of leaf projected onto a 
horizontal plane. Number of segments of leaf is set according 
to the leaf shape. The real area and length of leaf could be 
obtain using equation (3, 4), where 𝑙 is the length of the main 
leaf vein projected onto a horizontal plane.  

3 Results and Discussion 

Plant leaf morphology (leaf angle, length, and area) were 
retrieved based on point cloud data of individual leaves.  
Figure 2 shows the values scatter plots between the leaf 
morphology of individual leaves estimations and manually 
measured.  

The leaf azimuthal angle, length and area estimations 
were in a good agreement with values obtained from manual 
measurements (R2 = 0.996, RMSE=4.7587°; R2 = 0.997, 
RMSE = 0.04957cm, and R2 = 0.997, RMSE = 0.32215cm2, 
respectively). The estimation of leaf inclination angle was 
low-correlated (R2 = 0.44021, RMSE=1.3957°). Note that 
angle measured by manual measurement of the curved leaf 
cannot truly reflect leaf shape, so the estimations of leaf 
inclination and azimuthal angle were considered accurate. 

4 Conclusions 

In this paper, the measurement method of leaf morphology 
based on point cloud data was constructed. By using 
AGNES and cubic interpolation method, leaves were 
segmented and reconstructed. The comparison results 
demonstrated that the proposed measurements could 
estimate curved leaves morphological with higher precision 
(leaf morphology R2 were 1.3957°, 4.7587°, 0.04957cm, 
and 0.32215cm2, respectively). In the future, we will 
continue to improve the blade segmentation method. Plant 
morphology measurement method based on reconstruction 
of plant point cloud will be developed to provide technical 
support for plant growth monitoring.  
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Figure 1: Measurement Method of leaf Morphology Based on 
Point Cloud Data 

Figure 2: Scatter plots between the leaf morphology of individual 

leaves estimations and manually measured. 

and azimuthal angle estimations from simulated data and ground 

truth 

measurements. 
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Abstract

In this work, SIFT features are revisited for their use in two applications of computer vision for plant
analysis. The first application is the reconstruction of 3D models of plants through tracking homologue
points in successive intensity images. The second application is to provide a new global descriptor that
gives a measure of the level of self-similariy of foliage for plants of di�erent architectures and foliar
appearance. In order to properly exploit SIFT descriptors in relation to these applications, we discuss two
aspects of the classical SIFT keypoint matching practice. On the one hand we propose to match detected
keypoints based on a scale criterion. On the other hand, we drop the ratio rule while matching keypoints
in two images and propose the use of a spatial proximity filter instead.

Keywords: Image Processing, SIFT, Self-Similarity, Plant Foliage.

1 Context
Scale Invariant Features Transform (SIFT) has been introduced
with a biologically inspired philosophy [1] to reproduce the hu-
man capability to recognize objects when observed at various
scales. SIFT achieves this scale invariance with local features
mimicking the way the human eye captures information locally
via the fovea [2]. This local feature encoding has been demon-
strated to be very useful, for registration of cluttered images and
for object recognition. However, an issue rarely discussed while
using SIFT in such context is that biological structures are very
self-similar and multi-scale. This is specially the case for plants
which grow, by design, with replication of branches and leaves
which may all be very similar [3]. In this context, we revisit
SIFT to raise interest on the issues of scale-dependency of SIFT
and the matching scheme of the keypoints, both to characterize
the self-similarity of foliage and to provide correct homologue
point matches between successive images for 3D reconstruc-
tion. We illustrate our approach with plants positioned on a
turntable and imaged with a color camera.

2 Using SIFT keypoints to match homo-
logue points

Detection of homologue matches between images of plants is
an important step for capturing the 3D geometry through, for
example, structure from motion, or from turntable image se-
quences. The number of correct matches between views has
a high impact on the estimation of camera poses. The self-
similarity of plants contributes in a negative way to the correct

matching of homologue points between views. A demonstration
is shown in Figure 1. The keypoints in two consecutive frames
from the turntable sequence are matched using the classical
SIFT keypoint matching scheme described in [1]. Considering
that SIFT yields few stable keypoints in low-resolution images,
incorrect matches due to self-similarity in plants have a detri-
mental e�ect on estimating camera parameters. Furthermore,
Lowe’s ratio rule [1] has a negative e�ect for plant images
possessing repetitive structures. The ratio rule states that a
match between two images is valid only if the ratio between
the descriptor distance between the first and second candidates
is lower than a threshold. This condition fails often for plants
due to self-similarity. For image sequences of plants where the
camera movement is small, we drop the ratio rule and use an
alternative matching scheme for successive images. For each
keypoint in the first image, only spatially close keypoints in the
second image are considered for matching. We further filter
the candidate keypoints by scale and only allow matches within
0.5 scale di�erence. The filtered candidates with a descriptor
di�erence below a threshold are accepted as matches.

3 Using SIFT keypoints to evaluate self-
similarity

The SIFT keypoints can also be used to measure the self-
similarity of the foliage with an alternative matching strategy.
Self-similarity in this context can be described as the amount
of repetitive patterns within and between views. A four-steps
method is proposed to quantify the amount of similar, but not

1



Figure 1: (a) Matched SIFT keypoints in two consecutive frames from a turntable sequence. The ratio rule in [1] was used. Red lines
indicate non-homologue matches. The size of the blue circles indicates scale. (b) Example pairs of non-homologue matches from (a).

Figure 2: On the left: 2 plants (’Queen Elisabeth’ rosebush and ’Sanseviere’ houseplant) with di�erent foliage appearances. On the
right: polar plot of the self-similarity (amount of similar keypoints) of the 2 plants according to the angle position of plants on the
turntable.

spatially homologue, keypoints. The first step is the tuning of
parameters (octave, first layer, number of layers) of the SIFT
computation for one image. It provides an image represented by
a collection of keypoints (and descriptors) at an adapted scale,
where one reference keypoint associated to a leaf can be de-
fined. The second step consists of comparing the descriptors of
the other keypoints to the reference by Euclidean distance then
filtering keypoints by thresholding distances according to the
mean distance between all descriptors in this image. In the third
step, we count all the filtered keypoints, which are considered
to be similar to the reference keypoint. In the fourth step, we
repeat the second and third steps on all the images from the
turntable i.e. 72 images (1 image / 5 degrees = 360 degrees) to
count the amount of similar keypoints and we plot these values
in polar representation as illustrated in Figure 2.

To test the relevance of this approach, we choose to ap-
ply this method on two plants with di�erent foliar appearance.
We can observe that plant 1 (’Queen Elisabeth’ rosebush) has
a complex architecture with many branches leading to a large
number of leaves and a wide distribution of them throughout the
plant. The plant also has a non-symmetrical geometry. Plant
2 (’Sanseviere’ houseplant) has a simpler architecture, verti-
cally tubular, with tight leaves distributed relatively uniformly
around the central axis of the plant. The polar curves in Fig-
ure 2 exhibit di�erent amplitudes: plant1 (red curve) has higher
amplitude than plant 2 (blue curve). Such amplitudes can then
be interpreted as other quantitative descriptors complementary

to the ones (e�ective volume, spatial symmetry and lacunarity)
introduced in [4] to characterize the global appearance of the
plant foliage.

4 Conclusion
We modified the classical matching scheme of the SIFT method
by removing the ratio rule and introducing scale and spatial
constraints to reduce the e�ect of self-similarity on the number
of homologue matches between successive images of plants.
We also employed scale-dependent matching of keypoints at
certain scales to estimate the self-similarity of foliage as the
amount of repetitive patterns throughout the plant views.
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Abstract

Quantifying the changes in morphology of wheat grain across development is essential to better understand

the factors limiting its growth. In this work, we investigated such changes using X-ray micro computed

tomography (µCT) and 3D digital image processing. We developed a robust semi-automatic image

processing methods for identification of 3D wheat grain and extraction of grain morphometry. We also

proposed an approach to construct an average grain as a representative shape for each developmental

stage. The quantitative description of morphology and of the average grain enlights the di�erences of

growth within the grain. These first results will help build a developmental atlas of wheat grain based on

3D imaging data.

Keywords: X-ray µCT, 3D image analysis, 3D shape modeling, wheat, Triticum aestivum (L.).

1 Introduction
Wheat is one of the most important crops worldwide. Grain size

and shape are two important grain traits that impact grain yield

and milling performance. Both traits are established during

grain development. Therefore, the quantitative description of

changes of grain morphology through its development should

help to identify factors limiting the growth.

3D images of wheat grains can be acquired from X-ray micro-

computed tomography (µCT) [1]. 3D image analysis can be

applied to obtain quantitative data describing the grains [1].

However, most works focused on mature dry grains, and the

quantitative morphology of developing wheat grains remains

largely unknown.

We investigated X-ray tomography to quantify changes of

morphology of wheat grain during its development. The ap-

proach comprises a semi-automated workflow for 3D segmen-

tation and quantification, and the construction of a statistical

shape model that depicts the global changes of shape.

2 Methods
Images of wheat grains at various stages were obtained using

X-ray µCT tomography. We developed an image segmentation

workflow to identify the wheat grain within 3D µCT image. The

segmentation process included automated selection of thresh-

old from a multimodal histogram, selection of regions based on

size criterium and morphological filtering. We extracted sev-

eral morphometric features of individual wheat grains: grain’s

dimensions, volume of the di�erent tissue regions. In addition,

we developed a specific workflow for quantifying the shape of

the grain crease based on the variations of crease depth along

grain length [2].

Figure 1: Construction of the average grain for a developmental stage.

a Result of the shape alignment using ICP algorithm [3]; b Each point in

the average shape (the orange curve) is the average of correspondences

between grain shapes and the reference shape (the blue curve).

In order to take into accound the biological variability be-

tween grains of a same developmental stage, we developed an

approach for the construction of an average grain shape model

for each stage of development. The 3D binary images of wheat

grains were converted to 3D point clouds. The point clouds

in the same stage of development were aligned to a reference

shape using principal axis alignements followed by an Iterative

Closest Point (ICP) algorithm [3] (Fig. 1a). The reference

shape was chosen as the grain whose length is the closest from

the population average. The ICP algorithm finds the best rigid

transformation (i.e. using only translation and rotation) that

projects an indiviual point cloud onto the reference point cloud,

by minimising the distances between corresponding points. The

initial average shape was computed by taking the average of cor-

1



respondences between the initial reference shape and respective

shapes of the population (Fig. 1b). Finally, the average grain

corresponding to the Fréchet mean [4] was computed using the

following procedure: The initial average shape was chosen as

the reference. The grain shapes were re-aligned using the ICP

algorithm to the reference shape. The new average shape based

on the re-aligned shapes was computed. The procedure was

iterated until the average distance of individual shape’s vertices

to average shape reaches stability.

Shape variability maps were also considered to investigate

the biological variability. For each vertex of the average grain,

the distances di to each individual point cloud were measured.

The average of the distances di was used as a variability measure

of each vertex.

3 Results
The X-ray µCT allowed the 3D image acquisition of whole

grains for all considered stages of development and the observa-

tion of the grain internal structures. The 3D images highlighted

the evolution of the grain shape during development: the grains

of early stages present an inverted triangle shape with a large

roll (Fig. 2a), then the grain elongates to form an ellipsoid (Fig.

2c). At later stages, the lobes thicken.

The initial average grain was constructed for each stage of

development (Fig. 2b, d). The resulting shape was similar to

a typical grain of the corresponding stage. The global shape

is more smooth, but it retains many fine structures, especially

around the rolls. The shape of the crease is also well preserved.

The variability measure of each vertex of the average grain

ranged from 0.01 – 0.13 mm at stage 60
�
DAA and 0.02 – 0.17

mm at stage 310
�
DAA (Fig. 2). The average shape variability

is approximately 0.04 mm at stage 60
�
DAA and 0.07 mm at

stage 310
�
DAA respectively. It depicts the representative shape

of a grain population in a developmental stage. It enabled us to

identify the regions of the grain that exhibit the distribution of

local shape variation around the average shape.

4 Conclusion and Perspectives
In this study, we shows that X-ray µCT acquisitions and image

processing methodologies has great potential for investigation

on morphometry of developing cereal grain. The morphometry

analysis of wheat grains will be completed by additional features

such as surface area, symmetry factor, or local curvatures. The

average of wheat grain describes variability in the shape and

size in each developmental stage of the wheat grain population.

Further work will focus on the computation of average grains

using non rigid transform models, and on the construction of a

4D (3D + time) developmental atlas of wheat grain throughout

its development based on average grains generated for each

developmental stage.

Figure 2: Construction of the initial average grain for di�erent stages

of development. a, c Several individual grain models at stage 60

�
DAA (a) and 310

�
DAA (c); b, d Results of the initial average grain

construction for each stage. Blue colors correspond to low variability,

bright colors correspond to high variability (greater than 0.07 mm).

Scale bar is 1 mm.
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Abstract

Precision estimation of optical properties of leaves and angles of plants is necessary to evaluate the
absorbed photosynthetically active radiation (APAR). However, this estimation from unmanned aerial
vehicle(UAV)-captured leaf-scale images is a challenge.In this work, we propose a method based on tensor
decomposition by which a set of images of leaves are decomposed into three terms, each of which related
to the leaf normal, the sunlight direction and the leaf optical property, with multilinear rank-(3,3,1).

Keywords: Aerial Leaf-Scale Image, Optical Property of Leaf, Leaf Angle, Direct/Diffuse Flux

1 Introduction
The structure of plant is an important factor in photosynthetic
production because, given the photosynthetically active radia-
tion (PAR) on a plant, the plant structure is related to the fraction
of absorbed PAR (FAPAR) that determines the absorbed PAR
(APAR). There is a linear relationships between net primary
production (NPP) of a plant and APAR [1]. Among indices
that represent plant structure, leaf area index (LAI), leaf an-
gle distribution (LAD) and photosynthetic pigments contents
are critical indices that make contributions to FAPAR. LAD
determines plant interceptions of PAR inside the plants. PAR
penetrates more deeply into the plants when leaf inclination
angles are smaller, that results in more productivity [2].

With the era of UAV coming, the utility of aerial images for
agricultural monitoring will be remarkably improved. One of
potential application of UAV-captured images is phenotyping.
LAD and optical properties of leaves are among the phenotypic
traits. Compared with precision estimation of photosynthetic
pigments contents based on laboratory spectral reflectance of
leaves, retrieval of optical properties of leaves from aerial leaf-
scale images of plant is challenging because there is shading
in the leaf-scale images. The objective of this work is to re-
trieve optical properties of leaves and leaf angles from shading
distribution in leaf-scale images of plants.

∗This work was supported by JST PRESTO Grant Number JPMJPR17O2,
Japan.

†Corresponding Author: uto@c.titech.ac.jp
‡mauro.dalla-mura@gipsa-lab.grenoble-inp.fr
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2 Methods
Our objective is to estimate leaf normals and optical properties
of leaves based on leaf-scale images of plants. In this paper, we
begin with a reflection model under clear sky in which direct
sunlight is dominant. For the sake of simplicity of the optical
model, we assume that plant leaves are Lambertian surface.
Then, apparent reflectance of the leaf at x, t is given by

ρ(x, t,λ) = N(x) · L(t) k ′(λ), (1)

where k ′(λ) = k(λ)
Nw ·Lw ρw (λ) . N(x), L(t), k(λ), Nw , Lw and

ρw(λ) are the normal direction of leaf surface at a position x
in image coordinates, a direction vector of direct sunlight at a
time t, a Lambert coefficient of leaf surface at wavelength λ,
the normal vector of the diffuse reference standard, a sunlight
direction at the time of measurement and reflectance of diffuse
reference standard at wavelength λ.

We define τi,t ∈ RXi×B as a two-dimensional data array
of reflectance ρ(x, t,λ) of a plant i at time t, where Xi and
B are the number of pixels of the plant i and the number of
bands, respectively. Given intraday time-series aerial images of
agricultural field, we can utilize the temporal change in shading
for estimating the spatial distribution of leaf surface normal
directions. Let plant structures be invariant during intraday
measurements. A stack of time-series images of a plant i,
i.e., {τi,t }Tt=1, forms a three-dimensional structure spanned by
spatial, spectral and temporal coordinates, i.e., τi ∈ RXi×B×T .

Let Ni = (N(x1), . . . ,N(xXi ))T ∈ RXi×3 and L =
(L(t1), . . . ,L(tT ))T ∈ RT×3 be matrices whose rows correspond
to normal directions of surfaces at pixels xj, j ∈ {1, . . . ,Xi}

1



Table 1: Averaged cosine similarities between leaf normals and
estimations (unit: [deg]).

leaf angle rotation angle
0 90 180 270

10 0.0374 0.0441 0.0206 0.3898
20 0.1315 0.5699 0.1194 0.4051
30 0.2597 0.8348 0.2365 0.2393
40 1.9954 0.2215 17.8133 0.1350

within the plant i, and illumination directions of direct sunlight
L(tj), j ∈ {1, . . . ,T}, i.e., L. As per equation (1), τi,t and τi
can be decomposed into

τi,t = (NiL(t)T ) ◦ k′
i, (2)

τi = (NiLT ) ◦ k′
i, (3)

where the symbol ◦ represents the vector outer product. Given
rank-3 matrices Ni and L and a rank-1 vector k′

i , equation (3) is
a decomposition into terms with multilinear rank-(3,3,1).

The objective of tensor decomposition is to estimate intra-
field variation of optical properties k′

i and normal directions
of leaves Ni of individual plant i ∈ {1, . . . ,P} based on aerial
images {τi}Pi=1, where N is the number of plants. The tensor
decomposition for estimating k′

i and Ni is defined by

argmin
{Ni }Pi=1 ,L, {k′

i }Pi=1

N∑
i=1

∥τi − (NiLT ) ◦ k′
i ∥2

F , (4)

s.t . k′
i ≽ 0, ∀i ∈ {1, . . . ,P},

where ∥ · · · ∥F is a Frobenius norm and k′
i ≽ 0 means that all

the elements of a vector k′
i are nonnegative. In this work, we

used a solver based on optimization-based algorithm [3].

3 Experimental results
We applied the proposed tensor decomposition method to sim-
ulation data in which flat plates with 16 different angles were
illuminated from 17 different solar angles. Given a horizontal
plane is spanned by x (East-West) and y (North-South) axes, 4
flat planes whose angles between x axis and the planes were 10,
20, 30 and 40 degrees were generated. Then, the 4 planes were
rotated by 0, 90, 180 and 270 degrees around z (zenith) axis.
Consequently, flat planes with 4×4 = 16 different postures were
generated. The 17 different solar angles correspond to every 30
minutes from 8:00 to 16:00 in May at a place in Europe. The
Lambert coefficients of all the plates were identical (Fig. 1).
Fig. 2 shows examples of changes of leaf colors with different
sunlight angles.

Fig. 1 shows estimates of Lambert coefficients based on the
simulated images. Table 1 shows averages of cosine similarities
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Figure 1: Lambert coefficients and estimations (angle (1,2,3,4)
= (10, 20, 30, 40) [deg], rotation (1, 2, 3, 4) = (0, 90, 180, 270)
[deg]).

8:00 10:00 12:00 14:00 16:00

Figure 2: Simulated images.

between leaf normals and estimations. The results demonstrate
that proposed method successfully estimates leaf normals and
Lambert coefficients with high accuracies.

4 Conclusion
We have proposed a novel method that estimates optical prop-
erties of leaves and angle based on shading distribution. The
simulation results confirmed that the method successfully re-
trieved surface colors and angles when direct light is dominant
and the targets are temporally stable.
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Abstract 

Green plant segmentation plays an import role in hyperspectral-based plant phenotyping, however, 
this topic is not given enough consideration. Existing image segmentation methods are dependent on 
data types, plants and backgrounds and might not utilise the power of hyperspectral data. We 
proposed a one-class support vector machine classifier combined with a pre-processing method 
named hyper-hue to segment green plant pixels in hyperspectral images. Experimental results 
showed that his method can segment green plants from backgrounds with fewer errors and therefore 
could be used as a general method for hyperspectral-based green plant segmentation. 

Keywords: Hyperspectral image processing, Image segmentation, Plant phenotyping  

1 Introduction 
Hyperspectral imaging is a widely accepted and fast 

developing technology for plant phenotyping [1]. For most 
hyperspectral image analysis tasks, green plant segmentation 
is a necessary prerequisite which plays an import role for 
subsequent image processing procedures, however, the 
significance of this task is not well documented in current 
literature. 

In the visible and near-infrared (VNIR) spectra, some 
vegetation indices developed for multispectral images, such 
as hue and normalized difference vegetation index (NDVI) 
[2], have been used, however, these indices did not take the 
advantages of the power of hyperspectral data for more 
accurate processing. In the range of short wavelength infrared 
(SWIR), the segmentation methods are application-
dependent and there are no well-accepted procedures for 
reliable segmentation. 

After an investigation of the most often used vegetation 
indices, hyperspectral image pre-processing methods and 
classifiers, this paper proposes an image segmentation 
method which uses the combination of hyper-hue [3] and one-
class support vector machine (SVM) to segment green plants 
from the background in hyperspectral images. The method 
was tested using five different plant species in both VNIR and 
SWIR data and the experimental results showed that it can 
significantly reduce errors and could be adopted as a general 
approach for green plant segmentation in hyperspectral 
images.  

2 Material and methods 
Five plant species, including wheat (Triticum aestivum), 

barley (Hordeum vulgare), cotton (Gossypium spp.), 
arrowleaf clover (Trifolium vesiculosum) and Australian 
canary grass (Phalaris aquatic) were grown at The Plant 
Accelerator® (Australian Plant Phenomics Facility, 
University of Adelaide, Adelaide, Australia) in 2018.  Each 
species has 70 to 200 pots. When the plants had enough 
leaves, the hyperspectral images were captured with a high-
throughput WIWAM hyperspectral imaging system 
(WIWAM, Eeklo, Belgium). Two cameras were used to 
capture both of VNIR and SWIR images simultaneously in 
the dark chamber of the WIWAM system. The FX10 camera 
(Specim, Oulu, Finland) captured the VNIR data from 400 
nm to 1000 nm with 1.3 nm bandwidth and the SWIR camera 

(Specim, Oulu, Finland) acquired data in the range of 1000 
nm to 2600 nm with 5.7 nm bandwidth.  

A classifier was trained and validated using a part of the 
data of wheat and then was tested using the independent data 
of the five plant species. In our initial study, after testing the 
well-accepted classifiers and pre-processing methods of 
hyperspectral data, we found that the supervised one-class 
SVM and hyper-hue outperform others. In VNIR or SWIR 
data, a one-class SVM was trained, validated and tested using 
the following steps. (1) The hyperspectral images were 
calibrated using Eq. (1),  

𝑟p(𝜆, 𝑥, 𝑦) =
𝑖p(𝜆, 𝑥, 𝑦) − 𝑖d(𝜆, 𝑥, 𝑦)
iw(𝜆, 𝑥, 𝑦) − 𝑖d(𝜆, 𝑥, 𝑦)

 (1) 

where rp is the reflectance values of the plant at the spatial 
location (x, y) and the wavelength λ. ip, id and iw represent the 
measured intensity values of plants, dark references and white 
references respectively. (2) The noisy bands with the 
wavelengths below 450 nm in the VNIR data and above 2400 
nm in the SWIR data were removed. (3) 5000 pixels were 
selected manually and randomly from the top, middle and 
bottom parts of the wheat leaves in the 199 hyperspectral 
images of wheat, excluding the pixels on the borders of the 
leaves whose spectral signatures were the mixture of the 
leaves and backgrounds. Similarly, 2500 pixels of 
backgrounds were collected, including pots, bolt, soil, plastic, 
random noise, etc.  2500 pixels were randomly selected from 
the 5000 pixels of wheat as training data and the remaining 
2500 pixels plus the 2500 pixels of backgrounds were used as 
validation data. (4) The data was transformed from the 
original space of hypercube to the space of hyper-hue [3] 
whose performance for material classification has previously 
been proven [4, 5]. (5) A one-class classifier of SVM with the 
radial basis function (RBF) kernel (python sklearn toolbox, 
svm.OneClassSVM) was trained and validated using the 
training and validation data. The parameters were tuned to get 
the optimized performance. The trained model is named HH 
in this paper. (6) The trained model was tested in 
hyperspectral images of different plant species which were 
independent of the training and validation data.  

3 Experimental results and discussion 
To evaluate the contribution of hyper-hue in step (4), 

another model which used similar training processes while 
ignoring step (4) was trained and the model is named REF in 
this paper. At first, the models were validated using the 
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validation data and the errors are listed in Table 1, in which 
FP, FN and MIS represent false positive rate, false negative 
rate and misclassification rate respectively. Table 1 shows 
that, compared with the REF method, the HH method can 
reduce the errors to the levels of lower orders. As explained 
by Liu, et al. [3], hyper-hue is independent of saturation and 
intensity and therefore it is less affected by unstable 
illumination from the angular deviation of local surfaces and 
self-shadows of plants. Also, hyper-hue could increase inter-
class distance [4]. Next, the models were tested using 
hyperspectral images of wheat, barley, cotton, arrowleaf 
clover and Australian canary grass. For each species, a 
hyperspectral image which was independent of the training 
and validation data was randomly selected for testing. The 
images were firstly manually segmented using the Photoshop 
software and then were compared with the automatic 
segmentation. In the VNIR data, we compared several well-
accepted vegetation indices, including NDVI, green 
normalized difference vegetative index (GNDVI), enhanced 
vegetation index (EVI) [6], etc. and found that the method 
using EVI with the threshold 0.3 can provide the best 
segmentation. The performances of the EVI, REF and HH 
methods were tested in the VNIR data while only the REF 
and HH methods were tested in the SWIR data. The 
misclassification rates are plotted in Figure 1 and Figure 2 
and they show that the HH method significantly reduced the 
errors. Figure 3 shows the testing images of the REF and HH 
methods for the segmentation of barley in SWIR data.  

Table 1 Error rates of SVM model validation 
VNIR  SWIR 

 FP FN MIS  FP FN MIS 
REF 10.00% 0.32% 3.98%  0.20% 0.16% 0.18% 
HH 0.00% 0.02% 0.02%  0.00% 0.04% 0.02% 

 

 
Figure 1 Misclassification rate in VNIR testing data 

 

 
Figure 2 Misclassification rate in SWIR testing data 

 

In the testing data, the error rates are higher than that in 
the validation data. There are several factors which could 
cause a higher error rate in the testing data. First, in the 
manual segmentation, the pixels on the borders of the leaves 
were classified as foreground while in automatic 
classification, these pixels could be classified as background 
since the spectral signatures of these pixels were the mixture 
of backgrounds and plants. Second, the manual segmentation 
could have errors, especially for the narrow-leaf plants of 
wheat and barley. The segmented images will be further 
processed to analysis the nutritional distribution in the plants, 

including nitrogen, phosphorous, etc. The accuracy of the 
segmentation can meet this requirement. Use larger training 
data to train more complex models, such artificial neural 
network (ANN) or deep-ANN, would obtain the same or 
better result, however, using a smaller data set to train a 
model with acceptable accuracy is preferred when labour and 
cost of data collection is concerned.  

  
REF method HH method 

Figure 3 Testing images of the REF and HH method for the 
segmentation of barley in SWIR data (the red colour marks the 

contours of the plants) 

4 Conclusion 
Green plant segmentation in hyperspectral images is 
important for plant phenotyping. This paper introduces a 
segmentation method which uses the combination of SVM 
and hyper-hue1. Experimental results showed that this 
method outperformed the approaches using vegetation 
indices or SVM only. The model was trained using the data 
of wheat and worked equally well for other species. The 
modelling method was suitable for both VNIR and SWIR 
data. In the future, this green plant segmentation method will 
be further tested using data collected in the field, such as on 
aircrafts or ground-based vehicles.  
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Abstract 

 
Convolutional neural networks (CNN) have shown great interest for plants and organ counting. However, 
the accuracy of CNN to yield unbiased results on unseen data is determined by the domain dependence of 
the training datasets. In this study, an approach called Data Distillation to solve the problem of domain shift 
is evaluated in a study case to detect wheat ears from RGB images. The training and test datasets correspond 
to two different experimental sites. We demonstrate that Data distillation divides by 3 the error in the 
estimation of ears density. These results are promising to improve invariance on acquisitions conditions. 

Keywords: Deep Learning, Field phenotyping, Remote Sensing, Ear counting. 

1 Introduction 
The development of high-throughput phenotyping 
platforms has open new avenues to characterize plant 
functioning. The important availability of optical data –e.g. 
in the form of RGB or multispectral images, point clouds 
from LiDAR data– in those platforms requires the use of 
automatic approaches to extract relevant information of 
plant or canopy structure (e.g. structural traits like the 
amount of leaf area, the density of plants and plant organs). 
The use of deep learning algorithms, and, more specifically, 
convolutional neural networks (CNN), has become very 
popular in plant phenotyping. It has proven to be efficient 
in determining several structural traits in fully automatic 
manner such as plant counting [1], detecting the presence 
and estimating the density of reproductive organs [2], or 
identifying individual crops [3] 

Despite these important advantages, the empirical nature 
and complexity of deep learning often make difficult to 
understand how the variability of image features may 
condition the reliability of a trained CNN applied on unseen 
data. Even under similar acquisition set-up environments –
e.g. same camera, same measurement protocol– the 
operational use of CNNs to solve object detection/counting 
problems in phenotyping experiments exhibit some 
dependence of the domain when applied to dataset outside 
the training set:  

• Image acquisition parameters such as spatial 
resolution, blur, and integration time. 

• Agronomic variability, such as morphological 
differences across genotypes, or variability on 
plant phenology.  

• Environmental factors, such as illumination 
condition and soil background properties. 

A strategy to solve this domain shift problem is critical to 
improve the robustness of Deep Learning algorithms in 
plant phenotyping. In this paper, we explore the idea of Data 
distillation, introduced by [4]. Data distillation identifies 
automatically those favorable unlabeled observations in the 
target domain that help to improve the generalization of a 
previously trained CNN. This paper explains and evaluates 
the implementation of Data Distillation in the detection of 
wheat ears over different datasets of RGB images from 
phenotyping experiments. 

2 Material and methods 
a. Data acquisition  
RGB Images on wheat canopies were acquired after the 
flowering stage using a Sony ILCE-6000 RGB camera fixed 
on a boom and oriented at nadir, in two different 
experiments in the south of France: Gréoux (N 43° 45’, E 
5° 53’) and Mons (N 50°27’, E 3° 57’). The images were 
splitted into a training dataset (239 images, corresponding 
to the three different dates acquired at Gréoux), and testing 
dataset (182 images, corresponding to one dates at Mons). 
The images measure 6000 pixels by 4000 pixels. Each one 
represents a microplot. A set of 34 patches of 512 pixels per 
512 pixels is cropped for each of them. The images were 
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labelled manually, identifying the wheat ears present in the   
image. Ears density from the images is calculated by 
dividing the number of ears detected in each microplot by 
the ground area covered by the images. Additionally, ears 
density was manually determined in the experimental field 
by experts counting the number of ears on each microplot.  

b. Domain adaptation through Data 
Distillation 

Faster RCNN detection model [5] was used to detect ears in 
the images. The model was pre-trained on the MS COCO 
Dataset and trained with the mmdetection toolbox using the 
training dataset with a batch size of 4 images. Convergence 
was verified within 10 epochs. 
Data distillation is an iterative re-training process that 
incorporates automatically information from the test dataset 
to improve the generalization of the model (Figure 1). At 
iteration 0, the Faster RCNN is trained only with the images 
of the training dataset. In successive iterations, bounding 
boxes are predicted from unlabeled images of the test 
dataset, and multiple affine transformations (rotation, 
flipping, zoom) are applied to generate image ensembles. 
The Faster RCNN from the previous iteration is applied 
over the transformed images and ensemble predictions are 
merged into a single prediction with the non-max 
suppression algorithm. The predictions with a score above 
0.5 –i.e. a priori, those observations from the test dataset 
with more chances to be well classified– are identified as 
“weak labels”, and used as input to re-train the network, 
merging them with the original training set. The ratio 
between hard and weak labels is 75%/25% to avoid a 
decrease of the network performance. This process is 
repeated until performance started to decrease. To evaluate 
our approach, we calculate the relative Root Mean Square 
Error between the predicted number of ears and the ground 
truth.  
3 Results and discussion 
At iteration 0 corresponding to the network trained with 
data from a single site, the relative Root Mean Square Error 
(rRMSE) is large (Figure 2). This is mainly a consequence 
of contrasted illumination conditions between the Gréoux 
and Mons experiments, visually appreciable in the original 
RGB images. Data distillation allows to decrease 

dramatically the relative error, reducing the rRMSE by 
almost three at iteration 7 (Figure 2). However, the rRMSE 
starts to increase at iteration 8. The generation of weak 
labels from predictions don’t prevent apparition of false 
positives which led to a decrease in performance. From 
iteration 8, the performances continue to decrease. 

4 Conclusion 
This approach demonstrates the potentials of data 
distillation to overcome the domain shift between the data 
labelled available for training and the diversity existing in 
phenotyping experiments, which is highly relevant in those 
experiments where the variability of available domains for 
network training is low. Nevertheless, further efforts are 
necessary to identify an appropriate method to select 
efficiently weak labels, thus avoiding an eventual decrease 
of the performance after many iterations. 
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Abstract 
We present an image segmentation method aimed at detecting raspberry fruit on a plant and determining if 
that fruit is ripe or unripe.  We use images of entire raspberry plants grown in field conditions for this task.  
A deep learning framework based on u-nets with a resnet-34 backbone is used for this task.  We achieve 
good precision and recall of ripe and unripe fruit with f1 score of 0.884 for ripe berries and 0.868 for unripe 
berries. 

Keywords: Plant Imaging, Image Segmentation, Phenotyping, Field Imaging 

1 Introduction 

One of the most important traits for plant phenotyping is yield.  
The central aim of growers is to produce as much yield as 
possible with minimum input costs.  Accurately measuring 
yield in the field is therefore important to allow accurate 
predictions for supply chains. For soft fruit crops fruit picking 
is a major expense to the business requiring large amounts of 
manual labour. This issue is also relevant to researchers 
studying crops as picking all experimental fruit can 
significantly add to project costs.   

One of the other challenges related to fruit is scheduling 
pickers to pick fruit when they are at optimal ripeness.  This 
means that measuring both the amount of already ripe fruit and 
any unripe fruit that may be picked in a few weeks’ time is 
important for growers and also researchers.  As the fruit ripens 
the colour changes, enabling this to be tracked using imaging. 
This also produces challenges for accurate segmentation of the 
fruit especially early green fruit which is hard to distinguish 
from plant leaves and shoots. 

This study investigated using imaging by standard colour 
digital photography to locate and segment both ripe and unripe 
berries.  This has uses both as a tool in its own right and as an 
additional tool to support a hyperspectral imaging platform[1] 
for high throughput phenotyping that we are currently 
developing. 

2 Related work 

There have been several previous studies aimed at 
automated fruit detection by use of imaging.  Previous work 
by the authors has segmented ripe raspberries from 
hyperspectral images using a colour based threshold to 
detect red pixels.  This method is unable to detect unripe 
fruit in the green stage of development as is similar colour 
to plant leaves. 
 Early work looking at the problem of fruit detection has 
used a variety of handcrafted features to solve specific fruit 

detection works [2].  More recently there have been a few 
approaches using deep learning methods to tackle to 
problem.  These have treated the problem as either a 
semantic segmentation problem [3] or as an instance 
segmentation problem [4].   
 There have been several studies using a variety of deep 
learning methods to solve plant imaging problems.  A group 
in Nottingham used stacked hourglass method to accurately 
locate wheat kernels and leaf tips [5].  They used point-
based annotations with single clicks on objects of interested 
then generated heat maps from these points which were fed 
into stacked hour glass network. This approach achieved 
good accuracy in locating points after applying some post 
processing to the generated heat maps. 
 Our work builds on this study by similarly generating 
heat maps from single point clicks marking the fruit.  We 
have replaced the stacked hour glass network with a u-net.  
U-nets have been widely used for sematic segmentation 
where the desired output is an image of similar 
dimensionality to the original image.  

3 Method 

Images of raspberry plants were taken using a Cannon 
PowerShot SX60 camera.  Images were taken on raspberry 
plants grown in field conditions in Invergowrie, Scotland.  
The photos used in this study were all taken on a single date 
18th July 2018 at a time when the majority of the fruit on the 
bushes was ripe but both ripe and unripe fruit was present.  
The images were taken to include a single entire bush in 
each image.  A total of 236 images of different bushes were 
used for model training and validation.  A 20:80 split was 
used between training and validation data sets.  A second 
set of 33 images were used as a test set. 
 The images were annotated manually by first going 
through and clicking on all ripe fruit, then a second pass 
through the images clicked on all unripe fruit.  
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Figure 1: Left t ile of image containing both ripe and unripe fruit.  
Right corresponding distance map tile derived from manual 
marking. 

The images were then split into tiles of approximate 
500x500 pixels each.  For each tile an original rgb image 
was paired with a distance map with different colour 
channels being used to represent ripe and unripe fruit. An 
example of image distance map is shown in figure 1 above. 
 We chose to use a u-net network with a resnet-34 based 
architecture, pretrained on image-net, for our neural 
network.  U-net’s have been widely used for image to image 
problems after their introduction for biomedical image 
segmentation [6].  The network was first trained on 128x128 
images, then further refined on 256x256 images before final 
training was carried out at 400x400 tiles .  All steps involved 
a reduction in size based on original image sizes. 
 This progressive resizing allowed for the network to be 
trained quickly on smaller images and then further 
improved on larger images.  Similar results were achieved 
using 256 and 400 sized images indicating trying full sized 
images may not have resulted in any further improvement.   
 In order to go from the output heat maps back to 
locations of fruit a local maxima transformation was used.  
First a threshold was applied to the images to remove very 
small peaks found in back ground areas.  Then a local 
maximum filter was applied to find any points that were a 
local maximum excluding peaks within 20 pixels on other 
peaks.  The points found were then compared to the original 
annotations.  Any points within a similar distance of 20 
pixels were considered to be marking the same fruit.  
Precision and recall were then calculated for all the images 
in the test set for both ripe and unripe berries based. 
 
4 Results and Discussion 

For evaluation a separate test set of images was used.  This 
was done as the performance of validation set was used in 
making decisions on learning rate and when to change 
image resolution so model may have been some way 
optimised for validation set.  These images were taken at 
the same time as original set, but manual annotation 
happened at a later time compared to initial annotation.   

At maximum resolution tested 400x400 a F1 score for 
ripe berry detection of 0.884 was achieved for unripe berries 
the score was 0.868. This was only a slight improvement on 
scores of 0.883 and 0.832 achieved at a 256x256 resolution. 
The lack of improvement shown between 256 and 400 sized  

 
Figure 2: Example images with ripe and unripe fruit  marked. 
Circles are output from network stars from manual annotation. 

images indicates that the lower resolution is probably 
sufficient for the task. 
 The method was able to successfully ignore distant 
berries on plants occurring in rows behind the plants.  This 
is probably due to the network learning something about the 
required size of berries to find. 

The network struggled with clusters of berries close 
together where distinguishing individual berries becomes 
more challenging.  This may be due to the fact the method 
we used is best suited to sematic segmentation tasks 
however methods designed for instance segmentation also 
struggle with the task of distinguishing objects of same class 
that occlude each other. 

We have presented a method that is able to detect ripe 
and unripe raspberries from images taken of raspberry 
plants in the field.  This shows that methods developed on 
images acquired in a controlled environment can be adapted 
for use in the field. 

References 

1. Williams, D., et al., A method for automatic 
segmentation and splitting of hyperspectral 
images of raspberry plants collected in field 
conditions. Plant Methods, 2017. 13(1): p. 74. 

2. R. Jiménez, A., R. Ceres, and J. L. Pons, A Survey 
Of Computer Vision Methods for Locating Fruit on 
Trees. Transactions of the ASAE, 2000. 43(6): p. 
1911-1920. 

3. Dias, P.A., A. Tabb, and H. Medeiros, 
Multispecies Fruit Flower Detection Using a 
Refined Semantic Segmentation Network. IEEE 
Robotics and Automation Letters, 2018. 3(4): p. 
3003-3010. 

4. W. Chen, S., et al., Counting Apples and Oranges 
with Deep Learning: A Data Driven Approach. 
Vol. PP. 2017. 1-1. 

5. Pound, M.P., et al. Deep learning for multi-task 
plant phenotyping, IEEE Int. Conf. Comput. Vis. 
(2017). 

6. Ronneberger, O., P. Fischer, and T. Brox. U-net: 
Convolutional networks for biomedical image 
segmentation. in International Conference on 
Medical image computing and computer-assisted 
intervention. 2015. Springer. 



1 

Combining Computer Vision and Deep Learning for High-Throughput Aerial 
Phenotypic Analysis in Wheat Pre-Breeding 

Alan Bauer1,+, Joshua Ball1,+, Joshua Colmer1, Simon Orford2, Simon Griffiths2, Ji Zhou1,3,4,* 

1Earlham Institute, 2John Innes Centre, 3University of East Anglia, Norwich Research Park, UK 
2Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, China 

 
Abstract 

 
In this article, we introduce an automated analysis pipeline that combines modern computer vision (CV) 
and deep learning (DL) for large-scale aerial phenotypic analysis in wheat pre-breeding. The pipeline 
contains a customized DL classifier to segment hundreds of wheat plots in field conditions, as well as CV 
algorithms to improve the segmentation result. After that, plot-level phenotypic analysis algorithms have 
been developed in the pipeline to measure canopy traits during key growth stages.  

Keywords: Aerial phenotyping; deep learning; image analysis; phenotypic analysis; wheat.   

1 Introduction 

Aerial imagery has been popularly used in crop phenotyping 
in recent years, an approach that is capable of collecting large 
in-field crop images during the growing season. To extract 
meaningful phenotypic information from image data, high-
throughput analytic algorithms are required to measure traits 
such as vegetative indices and canopy structure [1]. In cereal 
breeding, aerial imagery has been used to monitor key yield-
related traits and crop performance in field conditions, based 
on which reliable decisions can be made to select lines that are 
likely to increase yield and yield stability [2].   

While a great deal of aerial image data can be collected 
every day, it is technically difficult to analyze the acquired 
datasets in a high-throughput and reliable manner [3]. In order 
to address this challenge, we have been developing automated 
analysis pipelines for aerial phenotyping since 2016 [4]. By 
combining CV and DL with modular software design, we 
have established an aerial image analytic platform that 
embeds a trained DL classifier (i.e. a convolutional neural 
network, CNN [5]) to segment hundreds of wheat plots in 
field experiments, as well as CV algorithms to rectify the 
segmentation. This article reports the analysis platform and 
its application to a wheat pre-breeding experiment conducted 
in 2016, at the Norwich Research Park, UK.  

2 UAV-Based Aerial Phenotyping 

Aerial imaging was conducted using an unmanned aerial 
vehicle (UAV), DJI Phantom 3 Pro, which is easy-to-operate 
and easy-to-access. Two approaches were followed in aerial 
phenotyping: (1) the standard DJI Go app to fly the UAV to 
high altitudes (e.g. 60 meters) to acquire images for the 
entire field; (2) the Pix4D Capture app to fly a programmed 
mission to cover the field at lower altitudes (e.g. 10 meters). 

Both applications allow the pilot to plan grid-based flights, 
drone speed, image overlap (the front and back overlap is at 
least 80% and a side overlap is 70% minimum), camera 
angles, and altitudes. Because lower-altitude flights can 
retain detailed canopy information, most of our flights were 
carried out at lower altitudes. Hundreds of images were then 
‘stitched’ to create a large orthomosaic image via the 
Pix4Dmapper software, representing wheat vegetation and 
canopy information of the entire experiment field. 

3 Deep Learning and Segmentation 

We chose DL for plot segmentation after a number of 
attempts using CV approaches. Because different wheat 
genotypes change color dissimilarly throughout the season, 
it is challenging to design a method to segment hundreds of 
wheat plots in a dynamic manner. As a result, a combined 
approach has been chosen in our work.  

To carry out phenotypic analysis of each plot, we firstly 
segmented soils in a given aerial image using a trained CNN 
model (Fig. 1). The architecture follows the AlexNet [6]. A 
 

 
Figure 1: The CNN architecture and the analysis workflow  
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simple CNN classifier was established that contains three 
consecutive convolutional layers, followed by max pooling 
and fully connected layers, as well as batch normalization 
and drop out layers to prevent overfitting [7].  

Because of the limited changes of features in the soil 
(i.e. color and pattern) during key growth stages, we trained 
the CNN model with over 6,000 labelled soil images using 
the 2016 aerial image series. The training datasets were 
selected across key growth stages to improve the 
generalization of the classifier. A 9x9 pixel sliding window 
is used to classify soil or non-soil regions with a step size of 
6, i.e. each sub-image is verified around three times. A sub-
image must obtain a soft-max output of at least 0.98 before 
it can be classified as soil. This threshold was optimized to 
reduce false positives under crop scientists’ verification.  

4 Automated Phenotypic Analysis  

After training the CNN classifier, we applied the model to 
a series of 15 aerial images collected between 28th April and 
29th July 2016, for a pre-breeding experiment that contains 
784 six-meter wheat plots (Fig. 2A). Because the CNN 
method produces a noisy binary mask of soil signals (Fig. 
2B), we therefore applied CV algorithms to improve the soil 
segmentation mask. A Hough Transforms method [8] has 
been applied to determine horizontal and vertical lines so 
that the field layout could be reconstructed. Then, each plot 
was measured independently and treated as an individual 
object so that it could be extracted from the field image and 
placed in a comprehensive matrix for phenotypic analysis.   

In Figure 2C, each column in the matrix denotes a given 
plot (i.e. a specific genotype) and how it performed during 
key growth stages; whereas each row in the matrix denotes 
the date of the aerial imaging together with the visual 
representation of all plots monitored on the day. After 
arranging the plots according to genotypes and phenotyping 
dates, we finally conducted trait analysis of each plot by 
computing indices such as Excess Red (ExR), normalized 
greenness, and an improved vegetative index (i.e. Excess 
Green, ExG, minus ExR, ExG-ExR) [9] based on red and 
green channels of the plot-level images (Fig. 2D). These 
indices are popularly used in the identification of plant 
biomass, ecological assessments, and crop vegetation. For 
example, ExR values (colored red) increased steadily after 
 

 
Figure 2: Phenotypic analysis and plot level vegetative indices 

 

the anthesis (10th June), correlating with the increase of 
biomass of wheat canopy due to grain filling. Normalised 
greenness dropped after grain filling (7th July), indicating 
the start of ripening. The improved vegetative index (i.e. 
ExG-ExR) values changed dramatically among key growth 
stages (e.g. from heading to flowering, 6th May), showing 
the change of key growth stages described before [9].  

5 Conclusion  

A major advantage of aerial phenotyping over ground-based 
methods is the increase in throughput and scale [10]. In our 
work, we used weekly flights to cover key growth stages, 
based on which phenotypic analysis of plot-level vegetative 
indices and canopy information can be recorded. We have 
extended the analysis platform to monitor canopy structure 
and interactions between genotypes and environment, for 
which we will report in subsequent publications. 
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Abstract 

 
Images play a vital role in crop phenotyping. Pixel-wise classification (into vegetation/background) or 
semantic segmentation is a critical step in the computation of several canopy state variables. Current state of 
the art methodologies based on convolutional neural networks are trained on data acquired under controlled 
environments. These models are unable to generalize to real-world dataset and hence need to be fine-tuned 
using new labels. This motivated us to create the P2S2 segmentation dataset – a collection of multi-crop RGB 
images from different acquisition conditions. We present here the dataset and state of the art results. 
 
Keywords: Dataset, Segmentation, Convolutional Neural Networks, RGB, Crop 

1 Introduction 

Deep learning and convolutional neural networks (CNNs) 
have recently demonstrated their huge potential in plant 
image segmentation [1]. However, the training and 
validation images are often acquired in laboratory and under 
controlled illumination conditions [2]–[3]. The evaluation of 
the method performances is also often limited to specific 
conditions including species or cultivars, crop stage, and 
illumination conditions. To overcome this issue, we propose 
the P2S2 dataset of annotated images: it was initially 
acquired for the validation of vegetation products derived 
from the Sentinel 2 satellite. It is composed of 75 images 
acquired over nine crops and different stages/conditions. We 
first describe our annotation strategy to build an accurate 
dataset. We then use the P2S2 segmentation dataset to 
evaluate the performances of a CNN trained with already 
existing datasets from the literature. We hope that this 
publicly available dataset will help crop phenotyping 
research to overcome the bottleneck in robust segmentation 
model building. 

2 Materials and methods 

2.1 Image collection: The data collection was carried out 
in four sites in France and Belgium chosen for their varied 
climatic and soil conditions. These four sites were 
cultivated with nine crop species - wheat, rapeseed, maize, 
sunflower, sugar beet, rice, potato, soybean and grassland. 
We considered five acquisition dates across the growing 
season in such a way to cover as many growth stages as 
possible. Downward looking digital RGB images were 

acquired at the ground level. Approximately 2400 images 
of size 6000 x 4000 pixels were collected through this 
experiment with a spatial resolution of 0.2mm. From these 
images, we picked up 20 random patches of 512 x 512 
pixels for each crop species. A maximum of four patches 
before and after the appearance of organs was selected. 
This led to a total of 75 images 
 
2.2 Annotation strategy: Thirteen experts precisely 
annotated the 75 images using a custom improved version 
of the JavaScript annotation tool provided by [4]. To avoid 
annotation bias due to subjectivity, at least two 
independent experts reviewed each annotated image. The 
dataset was annotated following a simple rule: labeling all 
the pixels belonging to a plant as vegetation (including 
flowers, spikes, and dried leaves) and the rest as 
background.  
 

 
Figure 1 Examples of images and their corresponding 

annotated masks 
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2.3 CNN architecture: 
We built a CNN inspired from the U-Net convolution-
deconvolution architecture. We used ResNet with 18 
layers, initialized on the ImageNet dataset, as the 
backbone architecture. The training dataset was composed 
of five ready-to-use datasets that included the images and 
their corresponding vegetation/background mask. These 
datasets correspond to a range of vegetation: CVPP dataset 
(top view of rosette plants), Easy-PCC (rice and wheat 
fields), wheat, carrot and weeds, and one other dataset of 
wheat (unpublished) [5]–[7]. This constituted 1400 
images, from which 15% was withheld for validation. 
 
2.4 Evaluation metrics: 
The CNN model was tested on the P2S2 segmentation 
dataset and its performances were also compared with a 
random forest (RF) model. The RF classifier was trained 
with the RGB pixel values, and we used 100 trees in the 
final estimator parameters. The fraction of vegetation and 
the mean IOU from these two approaches were compared. 

3 Results and Discussion 

3.1 CNNs achieve comparable performance to RF: 
  
Both approaches achieved a relative error of 20% on the 
P2S2 dataset. The lowest performances were achieved on 
crop species that were not selected in the training database. 
For the CNN, the performances are affected by the spatial 
resolution and the sharpness of the images. Regarding the 
RF model, the main limitations are due to strong 
illumination conditions, soil appearance and the presence 
of non-green vegetation. 
 

 
Figure 2: Vegetation cover estimates by CNN and RF 

4 Conclusion and Perspective 

We introduced a new, carefully annotated, precise, diverse 
image dataset acquired in a realistic environment. This 
challenging dataset is designed to improve the 
segmentation of vegetation images by building robust 
models. Moreover, it could be used as a common 
benchmark for future studies on vegetation segmentation It 
was used to evaluate a CNN approach trained on existing 
datasets from the literature. Results showed quite poor 
performances of this method due to the discrepancies 
between the training and the P2S2 dataset.This highlights 
the overall-value of this new dataset. Future work will 
focus on data augmentation and domain adaptation.  
 
Acknowledgement 

We acknowledge the financial support of the Centre 
National d’Etudes Spatiales (CNES) through a research 
grant under the program TOSCA (Terre solide, Océan, 
Surfaces Continentales, Atmosphère) for the acquisition of 
in situ measurements. We are also very grateful to the 
participants of the in situ measurements over the different 
sites. 

References 

[1] H. Scharr et al., “Leaf segmentation in plant 
phenotyping: a collation study,” Mach. Vis. Appl., 
vol. 27, no. 4, pp. 585–606, 2016. 

[2] P. Lottes, J. Behley, A. Milioto, and C. Stachniss, 
“Fully Convolutional Networks with Sequential 
Information for Robust Crop and Weed Detection in 
Precision Farming,” ArXiv Prepr. ArXiv180603412, 
2018. 

[3] J. R. Ubbens and I. Stavness, “Deep Plant Phenomics: 
A Deep Learning Platform for Complex Plant 
Phenotyping Tasks,” Front. Plant Sci., vol. 8, 2017. 

[4] P. Tangseng, Z. Wu, and K. Yamaguchi, “Looking at 
outfit to parse clothing,” ArXiv Prepr. 
ArXiv170301386, 2017. 

[5] H. Scharr, M. Minervini, A. Fischbach, and S. A. 
Tsaftaris, “Annotated image datasets of rosette 
plants,” 2014. 

[6] W. Guo, B. Zheng, T. Duan, T. Fukatsu, S. Chapman, 
and S. Ninomiya, “EasyPCC: Benchmark Datasets 
and Tools for High-Throughput Measurement of the 
Plant Canopy Coverage Ratio under Field 
Conditions,” Sensors, vol. 17, no. 4, Apr. 2017. 

[7] S. Haug and J. Ostermann, “A crop/weed field image 
dataset for the evaluation of computer vision based 
precision agriculture tasks,” in European Conference 
on Computer Vision, 2014, pp. 105–116. 

 
 



1 

Daily high resolution RGB images allow accurate dating of heading stage in wheat 
crops  

Kaaviya Velumani1, Simon Madec2, Jeremy Labrosse1, Jocelyn Gillet1, Raul Lopez Lozano2, Benoit de Solan3, Frederic Baret2 

1Hiphen SAS, Avignon, France 
2INRA, UMT-CAPTE, EMMA-PACA, Avignon, France 

3Arvalis Vegetal, Avignon, France 

Abstract 
 

Heading is a critical phenological stage that constitutes the transition between vegetative to reproductive phases 
of wheat during which the plant becomes highly sensitive to abiotic stress. Observations of heading stage are 
currently done visually by operators in the field. In this study, we present a Convolutional Neural Network 
(CNN)-based methodology to estimate automatically the heading date from daily images taken by a network 
of 27 field sensors. The results provided by this methodology have an absolute mean error of 1.58 days over 21 
sites and are validated against expert observations. 

Keywords: Heading Date, Internet of Things for Agriculture, CNN, Phenology

1 Introduction 

Accurate observations of the wheat heading date are essential 
within breeding programs and decision-making in farms to 
optimize yield and quality during the grain filling stage. Very 
few attempts exist to determine the date of heading 
automatically. The work of [1] proposing a CNN-based 
method for the discrimination of phenological stages of wheat, 
seems promising, but so far, no results on the absolute 
accuracy of the method are provided. In this study, we present 
a methodology to estimate automatically the heading date 
from daily images taken by a sensor located in agricultural 
fields. To achieve this, a CNN is first trained to detect wheat 
ears on individual images and the heading date is determined 
by the evolution of the ears present in the daily images along 
the growing season. 

2 Materials and methods 

2.1 Field campaigns: Field observation systems1, named 
Internet of Things for Agriculture (IoTA), developed by 
Bosch and Hiphen, were installed in 27 fields across France, 
sown with 8 varieties of soft (Triticum Aestivum) and 
durum (Triticum Durum) cultivars. They collected data 
throughout the 2017 and 2018 growing seasons. This 
includes daily RGB images taken 1m above the crop 
canopy, with a horizontal field of view of 55°, having 
dimensions of 1024 x 768 pixels and footprint of ~10.8 m2. 
 
2.2 Visual determination of the heading date: The 
heading date is defined as the time when 50% of the final 
number of ears have emerged from the base of the flag leaf 

                                                             
1 www.hiphen-plant.com/our-solutions/iot-field-sensor 

by 50% of their length [2]. A group of experts determined 
the heading date on the fields monitored by analyzing the 
time series images from the IoTAs. 
 
2.3 Automatic detection of wheat ears in RGB images: 
The daily images from 6 field sensors were divided into 
three groups: training, hyper-parameter tuning (to 
determine the learning rate decay, number of epochs, batch 
size and dropout percentages) and test (as shown in Table 
1). Each image within these groups was then split into 
patches of 256 x 256 pixels with 50% overlap to prevent 
GPU memory problems and limit border effects. These 
patches were visually attributed to the class “headed” or 
“not headed” as shown in Figure 1. Inception-ResnetV2 
network [3], pre-trained on the ImageNet dataset is then 
fine-tuned using the labelled wheat patches. 
 

 
Figure 1 Examples of patches classified as “headed” (top 

row) and “not headed” (bottom row). 
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Table 1 Number of labelled patches used to train, validate and test 
the CNN to detect the presence of ears. The images in the test 
group belonged to different varieties than those used in the training 
and hyper-parameter tuning. 
 

 Headed Not-headed 
Training 3676 3775 
Hyper-parameter tuning 1008 1008 
Test 1255 1255 
Total patches 5939 6038 

 
 Pretraining combined with data augmentation is an 
efficient strategy to improve the convergence and 
regularization of CNNs when the volume and the variability 
of available images of the training dataset are limited as in 
our case. 
 Classification performance of the CNN was evaluated 
based on three metrics: 

a) Overall accuracy 𝑂𝐴 = 𝑇𝑝+𝑇𝑛

𝑁
 

 
b)Precision 𝑃 = 𝑇𝑝

𝑇𝑝+𝐹𝑝
 

 
c)Recall 𝑅 = 𝑇𝑝

𝑇𝑝+𝐹𝑛
  

where 𝑇𝑝 and 𝑇𝑛 are true positive and true negative; 𝐹𝑝 and 
𝐹𝑛 are false positive and false negative respectively; and 𝑁 
is the total number of patches. 
 
2.4 Estimation of the heading date: The expert criteria to 
determine visually the heading date (Section 2.2) was 
transposed to identify automatically the heading date from 
the analysis of classified patches: the proportion of plants 
with at least 50% of ears emerged is approximated by the 
fraction 𝑓ℎ𝑒𝑎𝑑(𝑑) of patches classified as “headed” 
belonging to an image taken on date 𝑑. Therefore, heading 
date, 𝑑ℎ𝑒𝑎𝑑, is defined when 𝑓ℎ𝑒𝑎𝑑(𝑑ℎ𝑒𝑎𝑑) = 0.5 (Figure 2). 

3 Results and Discussion 

3.1 CNN’s ability in recognizing ears in patches: The 
fine-tuned CNN shows an overall accuracy of 95.2% on the 
test dataset with a recall of 90.6%. The false positives are 
very marginal (precision is 99.7%) and mainly linked with 
quality issues of the patches (rain, blur), inducing wrong ear 
detection. 
 
3.2 Accuracy of the heading date estimation: The graph 
in Figure 3 shows the performance of the method compared 
to the visually determined reference date in the 21 fields not 
used in the training of the CNN. The automatic method can 
detect the heading date with an average error of 1.58 days 
over most of the plots. The outlier circled in red had a 
maximum error of 8 days delay. On inspection, it was found 
that it corresponds to a plot with zero nitrogen fertilization 
experiments and was difficult to deduce the presence of 
wheat ears by visual interpretation of the images. 

 
Figure 2 Determination of heading date from the dynamics of  fe,d 
 

 
Figure 3 Comparing the wheat heading date estimated by the 
model with reference dates in the 2017 and 2018 campaigns. 

4 Conclusion 

Thus, through this study we have developed a simple 
method which is robust over wheat varieties in detecting the 
heading stage with an average error of 1.5 days. Further 
study is needed to improve the classification performance 
and understand why it fails to recognize ears in some cases. 
Another suggestion is to use a count-based method to 
identify the heading date to accurately identify the day 
where 50% of the ears have emerged within the sampling 
area.   
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Abstract 

 
High-throughput phenotyping data acquisition in the field is highly required to provide breeders with a set 
of accurate and heritable traits for the evaluation of the genotypes performances. An entirely automatic 
robot was developed, called Phenomobile, able to sample with a 100-200 plots/hour throughput using a 
12m long telescopic arm moving from 1m to 4m height. The vehicle is mounted on caterpillars to operate 
under difficult soil conditions. The measurement heads include LiDARS, high resolution RGB cameras and 
multispectral cameras used in active mode with flashes. The phenomobile is driven by RTK-GPS with 
centimetric accuracy. Sensors are automatically triggered according to a predefined mission, and the data 
stored under standard format for easy processing. Fist results and conclusions are given in this paper. 

Keywords: Field phenotyping, Remote Sensing, Robot, Unmanned Ground Vehicle. 

1 Introduction 
Acquisition of phenotyping data in field conditions is 
mandatory to support breeders with pertinent information 
on the performances of the genotypes. Although UAVs 
allow to characterize the genotypes with a number of traits, 
their application is often limited to some of the traits 
requiring either very high resolution imagery, high power 
consumption or heavy payload sensors. Further, UAV 
observations are mainly completed in passive mode, 
making the measurements sensitive to the illumination 
conditions prevailing during the data acquisition. Finally, 
flying UAVs might be limited by local regulations. 
Although associated with a lower throughput, Unmanned 
Ground Vehicles (UGV) is a versatile solution that carries 
a number of sensors operating in active mode from very low 
distance to the canopy allowing to record very high spatial 
resolution images. This paper presents a UGV called 
Phenomobile, that was specifically developed to sample a 
range of crops including tall crops such as sunflower or 
maize and crops that fills rapidly the interval left between 
two consecutive plots such as rapeseed or peas.  

2 Description of the phenomobile 
The phenomobile is made of three main components: (1) the 
vehicle, (2) the measurement head and (3) the data 
acquisition system.  

a. The vehicle  
The platform weigh eight tons (Figure 1). It is equipped 
with four caterpillars allowing to operate even under 
difficult soil conditions with limited damage. The platform 
can rotate 360° along a vertical axis above the caterpillars. 
It supports the diesel engine with 8 hours autonomy that 
runs both the hydraulic and electric units. The 12 m 
telescopic boom can raise the measurement head from 1 to 
4 m height. A cockpit allows an operator to ensure the 
security when the regulations do not authorize a full 
autonomous driving. The vehicle is running on the alleys, 
making stops on specific positions to sample a group of 1 to 
12 microplots on both sides of the alley. The throughput is 
in between 100-200 plots per hour depending on the plot 
size. 

 
Figure 1. The phenomobile with caterpillars showing the 
12m long boom supporting the measurement head. 
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b. The measurement head 
The measurement head (Figure 2) is made of two units: one 
looking vertically, the other looking at a given incidence 
angle from the side. The two units are positioned to sample 
approximately the same crop volume. Each unit is equipped 
with LiDARS, high resolution RGB cameras and 
multispectral cameras. The cameras are operated in active 
mode using powerful flashes, making the measurements 
fully independent from the illumination conditions. 

 
Figure 2. The measurement head with its vertical and side 
units. Each unit includes LiDARS (in blue), RGB and 
multispectral cameras operated with flashes. The white box 
on the right hosts the acquisition system. 

c. The data acquisition system 
The acquisition system is run by a PC using the ROS 
operating system dedicated to robotics. The acquisition 
system triggers the measurements that are then recorded in 
HDF5 format along with all the metainformation required 
to ensure FAIR principles in data management, including 
position and time stamp. The system is driven by 
phenoIHM (Figure 3), the application that defines and runs 
the mission.  

 
Figure 3. One typical page of the “phenoIHM” interface 
used to define a script for a given microplot. 

A mission corresponds to a measurement session, i.e. the 
sampling of a group of plots completed at a given date/stage 
along the growth cycle. It is therefore necessary to define 
the vehicle and measurement head used, with all the settings 
of the sensors. The trajectory (path) of the vehicle is then 
defined, with the several stops required to sample the plots 
considered. Then the script that describes the set of 
measurements to make on a given plot is defined by the start 

and stop positions (beginning and end of the plot) and all 
the positions where images are shot (Figure 3). Several tools 
help to define the mission by automatically repeating a 
script for a large number of plots. Once a mission is defined, 
it can be run automatically up to its completion. Warnings 
and a log file allows to control the quality of the 
measurements both in real time and after the mission ended. 

3 Sample results and conclusion 
The phenomobile started to operate in 2017 in Toulouse and 
two more copies are currently operating in Clermont and 
Montpellier. First results indicate a very good accuracy 
(Figure 3) due to the high spatial resolution available and 
the independency from the illumination conditions. Further, 
a very high repeatability (Figure 3) is also achieved 
allowing to get high values of heritability (Figure 4) and 
very good time consistency. 

 
Figure 3. Comparison of phenomobile derived GAI trait as 
compared to reference ground measurements. Data from 
Greoux experiment on wheat conducted in 2018. 

 
Figure 4. Heritability levels reached for several structural 
traits (Average Leaf Angle (ALA), Fraction of light 
intercepted (FIPAR), Green area index (GAI) and green 
fractions at 0° (GF0) and 45°(GF45)) derived from the 
Phenomobile over a wheat experiment in 2018 in Gréoux 
with well-watered (red) and water-stress modalities.  

It is concluded that the phenomobile is a very efficient 
system for a detailed monitoring of structural traits. It is 
further possible to easily add sensors to access new traits, 
particularly those benefiting from active measurements 
difficult to make from a UAV platform. 
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Abstract

Leaf veins make hierarchical networks. According to botanists, the mechanisms of their formation come

from the minimization of mechanical constraints. So, the vein network of a given leaf is an important

characteristic to know the species of that leaf. We present an automatic algorithm to extract and hierarchize

the network of leaf veins in order to use it in various studies, such as comparison between species. The

input to our method is a single photograph, taken by a smart-phone in a natural environment. From an

initial binary segmentation of veins, we use a thinning algorithm and a recursive labelling method to

extract the hierarchical structure, stored in a hierarchical hypergraph.

Keywords: Leaf venation architecture, segmentation, hypergraph.

1 Introduction
Leaf venation is the result of a complex development. In this

paper, we focused our work on tree leaves, which are part of

dicotyledonous plants. First of all, notice that these leaves share

a common structure framework and developmental algorithm

[7]. Indeed, plants grow according to a hierarchy based on vein

diameter and branching. This hierarchy is very important. It

allows, in particular, to optimize the transport of water so that

leaves feed as easily as possible [3, 6]. Typically, in a leaf, there

are one or more first order veins, called major veins. These

veins run from the petiole towards the leaf apex. They can

be compared to the main trunk, or trunks, of a tree. Second
(2°) order veins are branching o� on a major vein. They are

analogous to the major limbs of a tree [1]. Third (3°) order
veins are branching o� on a second order vein. There also are

minor veins forming a mesh between veins of higher order. The

general hierarchy of leaves veins is presented on an example in

Figure 1.

(a) (b) (c) (d)

Figure 1: Hierarchy of leaf veins [7]. (a) Major vein (red), (b)

2°order veins (green), (c) 3°order veins (light blue), (d) minor

veins (dark blue).

2 Our contributions
Previously, we worked on an automatic extraction of leaf net-

work of veins [5] basing our proposition on the medialness
measure [4], which allows to extract tubular structures. Some

examples are presented in Figure 2.

Figure 2: Examples of automatic extraction of leaf network of

veins [5].

In this paper, we present the next step: a method, which

allows to obtain a hierarchy in the most basic venations of

leaf (pinnate and palmate are presented in Figure 3). More

specifically, we are interested in the primary and secondary

veins, which are the major structural veins of leaf [1].

First of all, we thin the segmented veins while preserving

their topology, in order to represent veins in a concise way. To

do that, we used the MB2 algorithm [2]. This parallel algorithm

allows to obtain a set of connected curves having a thickness of

one or two pixels. To obtain a curve having exactly one pixel of

thickness, a post-processing is added. We remove all the single

points (that do not disconnect the curve), which are not terminal

(that have more than one one neighbor in leaf veins) thanks to

the Yokoi criterion [9].
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(a) Pinnate (b) Palmate

Figure 3: Most basic venations of leaf [8].

To obtain a hierarchy of leaf veins, we make assumptions

based on botanical literature. In pinnate and palmate, primary

and secondary veins are almost rectilinear. They run from the

base of the leaf toward the margin [1].

Based on such assumptions, we developed a recursive algo-

rithm taking as input the previously segmented leaf veins and the

beginning area (area already hierarchized). At the first iteration

of the algorithm, this area is the base of the leaf. The hierarchy

level is the label that we want to assign to the corresponding

veins. This algorithm returns Results, all veins labelled by the

level of hierarchy from the beginning area. At the beginning,

Results is initialised to empty set. In this algorithm, we use

the notion of branch, which is a sequence of pixels connecting

either two intersection points or, an intersection point and an

endpoint.

Algorithm 1 Hierarchy of leaf veins

1: function H��������(veins V, beginning area A, level of

hierarchy L)

2: for each branch from A do
3: - Among all the paths beginning at A
4: and leading to the margin of the leaf,
5: keep path P the most rectilinear as possible
6: based on the angles
7: - Label P with L
8: - Add P to Results
9: if L  1 then

10: Results Results+hierarchy(V,P,L+1)
return Results

Some examples of results are shown in Figure 4 where pixels

belonging to major veins are automatically colored in red and

pixels belonging to second order veins in yellow.

3 Conclusion and futur works
To conclude, we extracted and hierarchized the veins of the

majority of the tree leaves. To continue this work, we will

take into account the diameter of the veins, in order to be in

agreement with the observations of the biologists [7]. So that

our method can be applied to all plant species. Finally, we will

use these results in order to recognize the plant species from a

photo of one of their leaves.

Figure 4: Examples of hierarchy of leaf vein.
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Abstract

Registration of complex and self-similar images such as plant canopy images is a challenge in plant
sciences. Yet, this is often a required step for multimodal imaging, where unaligned sensors yield
unregistered image pairs. We propose a pipeline adapted to such constraints, applied to apple tree
canopies. Specifically, we apply an intensity-based registration on downscaled and/or Gaussian blurred
versions of the targeted images. This helps to eliminate spurious details, which smooths the optimization
landscape and also helps to reduce differences between the modalities. Results show better registration
than with standard feature-based or intensity-based methods.

Keywords: Registration, Multimodal Imaging, Apple scab, Infrared Imagery.

1 Case study
Apple scab is one of the most serious fungal infections of the
apple tree. RGB imaging has shown success for automatic
scab detection [2], but to improve its treatment, early detection,
i.e. before visible symptoms, would be valuable. Infrared (IR)
imagery has been shown to be suitable for this task [1].

Our goal is to perform automatic detection of scab on apple
plants images acquired both in RGB and in IR. We acquired such
multimodal images of apple plants inoculated with scab, from
a canopy point of view. Acquisition was done in the LARIS
laboratory (Angers) greenhouses in the 2018-19 period. The
sensor was a multimodal camera developed by the company
Carbon Bee. However, like in many multimodal acquisitions
cases, RGB and IR sensors were not exactly aligned and thus,
the two modalities of a given acquisition were shifted (Fig. 1).

Figure 1: An example of a RGB (left) and a IR (right) image
pair. A yellow rectangle is drawn on both images at the same
position. This shows the offset, which seems a feasible objective
for a registration algorithm.

This offset was an important problem for us as we needed the
images to be aligned for the rest of our analysis to work. There-
fore, we needed to perform registration within image pairs.

2 State of the art
Image registration techniques may be grouped in two families
[6]: feature-based and intensity-based.

Feature-based methods use matching features in image pairs
to find the transformation. The most well-known features are
SIFT [4]. However, even with careful tuning of the SIFT algo-
rithm, we find that our images are not suitable for this kind of
registration. We can see in Fig. 2 that keypoints in one modal-
ity are numerous and incorrectly matched with keypoints in the
other, and that there are almost no correct matches. The facts
that (i) there are highly complex and self-similar structures in
our images, and (ii) leaves have a different aspect depending on
the modality, make these images a bad fit for such a registration.

Figure 2: Keypoints found by SIFT and the 20 strongest matches
on an image pair, drawn as black lines.

Intensity-based methods consist in warping one image while
keeping the other fixed, guided by the optimization of some
similarity metric between the two images. This kind of regis-
tration applied to multimodal grapevine canopies has been done
by e.g. [5]. Our method is an adaptation of such a registration,
adapted to the specificities of our images.

1



3 Method
To perform an intensity-based registration, one must choose
the warp type and the similarity metric. Since the images
represent the same scene acquired through two cameras, the
transformation between the images resembles a homography
(it is not exactly so, as the scene is non-planar: leaves are at
different heights in the canopy). Accordingly, the warping was
set to a homography rigid transform. Concerning the simi-
larity metric, we chose the Enchanced Correlation Coefficient
(ECC) [3]. It is a measure of similarity between normalized
images (ECC ∈ [0,1]). Hence, it can interestingly, like Mutual
Information, work with multimodal images.

Having checked visually that a high ECC between two images
correlates with an adequate registration, we used this metric to
assess registration quality. Our first registration attempts using
ECC were sometimes quite poor: We hypothesized that this
was because of the numerous details in the scene, yielding a
highly non convex similarity metric optimization landscape.

Consequently, the contributions of this paper are the
following modifications on the intensity-based registration:
perform the registration on images whose resolution are
lowered, through downscaling and/or Gaussian blur.

4 Results
We applied our method to a dataset composed of 50 image pairs
of 2592 × 1944 pixels. Image pairs were acquired at different
times and orientations, leading to a relatively diverse dataset
(Fig. 3). In particular, the offset between images varied from
pair to pair. For each image pair, we applied the same down-
scaling/blur transformations to the two images, registered those
images, and adapted the resulting registration homography ma-
trix back to the original images.

Figure 3: Examples of RGB images from the dataset.

When using SIFT, registrations did not improve ECC for any
of the image pairs in the dataset. With the proposed strategy,
a combination of strong downscale and a strong blur yielded
the best results (Table 1, Fig. 4). Those were the cases where
some details were "blurred out" and where the only remaining
high frequencies were ones from leaf borders, which are robust
features for such a multimodal registration. The details blurred
out could even be misleading: inner structures in IR images
could strongly differ from the ones in RGB (e.g. scab vs veins)
while leaf contours stayed similar. In other words, our strategy
enabled us to control the scales our registration worked at.

σ = 0 σ = 2 σ = 4 SIFT
d = 1 8.4 9.4 10.0 0.0
d = 0.5 9.4 10.5 10.8 0.0
d = 0.1 10.9 11.5 12.0 0.0

Table 1: Results of our registration method on our database :
difference of ECC (in %) between the registered pair of images
and the original pair, averaged over all pairs in the dataset. d
refers to the scale applied to each dimension of the images.
σ refers to the Gaussian blur s.d. The last column refers to
registration done by SIFT with different d values.

Figure 4: An example of registration from a pair of our dataset,
with d = 0.1 and Gaussian blur, σ = 4.

5 Perspectives
Further work will focus on multiple resolution registration:
once images have been registered at a lower resolution, per-
form another registration at a higher level of detail, starting
from the first registration. Once the registration will satisfy us,
we will pursue our analysis of automatic scab detection, taking
full advantage of both modalities.
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Abstract 

 
Automatic disease quantification on whole plants is a complex human process and lacks, to our knowledge, 
turnkey solutions for controlled conditions screening processes. By using a custom phenotyping platform 
based on a hyperspectral sensor and Deep Learning algorithm, we built the first step toward a fully inte-
grated automatic Bean Rust disease quantification in controlled conditions.  
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1 Introduction 

To discover new active chemical molecules against plant dis-
eases, several steps of compound screening are performed in 
the early research phases. Only about 1 molecule over 160,000 
will succeed in reaching the agrochemical market, and only 
after about 12 years of research and development activities, 
including efficiency testing, optimization cycles and environ-
mental/human safety. This process implies the activity testing 
of small molecules on diseased plants at a high screening 
throughput. For example, about 3,000 bean rust plants, aged 
around 2 weeks, are visually assessed by humans every week 
in order to detect active compounds against bean rust (Uromy-
ces appendiculatus). The automation of these tasks would be 
of great interest to enhance the screening process and reduce 
variability within and between ratings [1, 2]. 

However, the task of disease quantification on a whole 
plant is a complex human process [3], not easily done with 
image analysis and automatism, even if the literature shows an 
interest in these technologies [4]. Moreover, the solution has 
to maintain a “compatibility” (correlation) with all the previ-
ous data obtained by manual assessment even if quantification 
from human vision and pixel counting will be different. 

In this contribution, we will present our first steps toward 
a fully automated disease quantification platform based on a 
hyperspectral sensor and an Artificial Intelligence (supervised 
Deep Learning [5, 6]). The gap between human and machine 
results is reduced by post-processing. 

2 Methods: dataset  

                                                
1 https://carbonbee.fr/images/agrotech/Datasheet-AQiT-Sensor-FR.pdf 

To obtain the training dataset, we built an ad hoc phenotyp-
ing platform including an AQiT-Sensor1 (full spectrum be-
tween 300 and 1000 nm) under LED lighting (Fig. 1). The 
data were produced from 380 real plants displaying gradient 
of infection related to disease severity from 0 to 100%. The 
plant reflectance was captured from the top with leaves 
placed in a flat configuration (Fig. 2). 

The disease was rated twice: in situ (i.e. simultaneously 
to image capture) on whole plants by a human assessor 
(ground truth), as well as on pictures independently by 4 
different human assessors. Then, a manual annotation of the 
disease was done over 120 pictures to perform the learning 
phase of Deep Learning (DL) algorithm. 

3 Methods: processing 

Once the dataset was produced, the images were post-pro-
cessed to train the Artificial Neural Network [5]. 

To focus on the AI (Artificial Intelligence) processing 
on the leaves, pictures were segmented by computer vision 
to remove the specific blue background color of the pheno-
typing platform (Fig. 1). A SegNet-like encoder-decoder 

Figure 1: Phenotyping platform 



2 

segmentation neural network was used to segment disease 
symptoms [6]. Initial weights were randomly set by AI.  

The training process follows state-of-the-art guidelines 
for AI training, including balanced MSE cost function, 
Adam back-propagating, F1-scoring and 70/30% ratio be-
tween training/test data.  

First, visual assessment of AI detection was performed 
on a subset of 30 non-annotated plants. In a second step, 
estimations of infected surface detected by AI were com-
pared to human annotations for all 380 rated plants. 

4 Results 

The segmentation of bean rust symptoms on bean leaves 
was relevant (Fig. 3). At the pixel scale, F1-score reached 
71 %. Even if the detected symptoms surface was often 
lower than the human assessment (especially in the 40-60 
% severity range), the evaluation proved more consistent 
over the whole severity gradient.  

Interestingly enough, AI did not confuse rust bean 
symptoms with other symptoms, such as clearer veins or 
discoloration zones. The comparison of detected surface 
and visual observation showed high linear correlation, with 
a mean root square error below 10%, which was within the 
range of human error (Fig. 4).  

5  Future Works 

This publication is the first step towards a fully integrated 
platform for an automated disease surface measurement. 
The evaluation showed the relevance and feasibility of the 
analysis, as the AI was able to clearly spot the symptoms of 
the rust without falling into the trap of similarities. 

On the other hand, there remains some scientific locks 
to tackle. 

 
 

 
AI evaluations were systematically different (but cor-

related) from those of humans and a reliable and robust non-
linear adjustment function remains to be built. 

Moreover, some mechanical aspects of the platform 
need to be corrected in order to stabilize and improve the 
spectrum quality (especially in the near IR). 
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Figure 4: Disease quantification (in %) obtained from compar-
ative disease rating between human and AI. Reference is in 
situ evaluation. 
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Figure 2: Example of rust infected bean plant picture (A) and an-
notated picture (B). Red coloration is used to highlight the plant 
diseased area. 
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Figure 3: Example of rust infected bean plant picture (A) and AI 
detection (B) on highly infected leaves.  
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