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Figure 1: Examples of colorized paintings, landscape and remote sensing images obtained with SpyncoGan.

ABSTRACT
We present a novel pseudo-cyclic adversarial learning approach for
unsupervised colorization of grayscale images. We investigate the
use of a non-trainable, lightweight and well-defined Handcrafted
Translation to enforce the generation of realistic images and replace
one of the two deep convolutional generative adversarial neural
networks classically used in cyclic models. Additionally, we pro-
pose to use Output Spatial Pyramids to jointly constrain the deep
latent spaces of an encoder-decoder generator to preserve spatial
structures and improve the quality of the generated images. We
demonstrate the interest of our approach compared with the state
of the art on standard datasets (paintings, landscapes, aerial, thumb-
nails) that we modified for the purpose of colorization. We evaluate
colorization quality of the generated images along the training
with deterministic and reproducible criteria. In complement, we
demonstrate the ability of our method to generate representations
that are prone to make a classification network generalize well to
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slightly different color spaces. We believe our approach has poten-
tial applications in arts and cultural heritage to produce alternative
representations without requiring paired data.
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1 INTRODUCTION
In the framework of representation learning, it is often assumed
that a neural network could be trained to virtually approximate
any function from a set of observations. These automatic meth-
ods proved to perform well in practice, but they often disregard
early mathematical models derived from physical observations (e.g.,
handcrafted functions). Semi-physical modeling used in Systems
Identification and Control Theory try to find a trade-off between
handcrafted and learned functions by regressing theoretically well
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Figure 2: Schematics of (a) a classical Cyclic Network [45]
and (b) a Pseudo-Cyclic Network, both in a GANmanifold.G
and F are generative networks,DA andDB are discriminative
networks, {Ht } represents a Handcrafted Translation from
domain B to A. Note the absence of DA in (b).

understood models and their parameters [3, 6, 27]. Nonetheless,
either handcrafted, identified and fully learned functions could
only be defined as sufficient approximations that rely on natu-
rally incomplete observations. Based on this statement, we propose
to investigate the following question in a context of colorization:
Could we use handcrafted functions to constrain the training of a
generative neural network toward a specific latent space without
supervision? To this aim, we propose a novel fully automated struc-
ture preserving model that we apply to unsupervised colorization.
We recall that Unsupervised colorization consists in learning col-
orization for (and from) grayscale images that are supposed to be
not paired with color images, like multi-resolution and multi-dates
historical data [31, 32]. While any colorization problem could be
formulated as a content preserving style transfer [8, 18, 43], we
rather propose to formulate the unsupervised colorization task
as an image-to-image translation problem [14]. Image translation
methods have proved their effectiveness in unsupervised learning
applications by leveraging cyclic constraints [45] on deep convo-
lutional generative adversarial neural networks (DCGAN) [10, 29].
Based on this idea, we introduce a pseudo-cyclic approach built
upon empirical priors (Figure 2).

These priors are explicitly introduced in the form of a Hand-
crafted Translation (Ht ) that we combine with Output Spatial Pyra-
mids (OSP ) applied on the latent space. We propose to use the term
of Handcrafted Translation in the context of image to image transla-
tion. As opposed to learned translations, a Handcrafted Translation
is defined upon prior knowledge of the problem. We define Output
Spatial Pyramids as consecutive feature maps with same number
of channels and increasing resolution (scale) that are all rescaled
to the same scale, so that all the feature maps of an OSP have the
same volume after rescaling. We argue that this property of Output
Spatial Pyramids allows to jointly optimize multiple layers of a
deep convolutional neural network toward a single scale objective
using a single mapping function between the deep features and
the output space. We demonstrate in our experiments that OSP
allow to preserve structure similarity while gradually improving
the colorization quality of unpaired images.

In summary, we present in this paper a pseudo-cyclic archi-
tecture to colorize unpaired grayscale images based on two core
components: Handrafted Translation and Output Spatial Pyramids.

2 RELATEDWORK
Image to Image translation methods were initially developed to
translate images between two representation spaces, A and B, by
using one encoder-decoder network per translation and seeking
cycle-consistency (i.e., the translation of an image I from A to B to
A should be equal to I ). In the remainder, we will note G (resp. F )
the network performing the translation from A (resp. B) to B (resp.
A) andG(.) (resp. F (.)) the corresponding function. In [14], authors
assumed the existence of data pairs to constrain the generation of
realistic images in both domains. Because data pairs may not always
be available, unsupervised cyclic networks [19, 45] were proposed
by leveraging GAN loss [10, 29]. Long and nest cyclic networks
[22] propose different strategies involving multiple generators to
enhance the quality of the translation. Integrating attention mech-
anisms in cyclic networks [25] was also proposed to improve the
translation realism of images representing object instances. Sim-
ilar to the cyclic networks, crossing-domain networks [9, 21] try
to learn a shared latent space between the two, or more [5, 39],
domains using GAN loss and variational autoencoders (VAE). Note
that, by design, the constraints imposed by the VAE formulation are
closely related to the identity loss proposed in [45]. In this study, we
build our work upon [45] to explore an alternative approach to train
an unsupervised cyclic network for colorization using handcrafted
translation Ht as a prior constraint instead of a second DCGAN.
We refer to this approach as pseudo-cyclic (Figure 2).

Colorization is a particular kind of Image to Image translation:
From a grayscale image, we would like to generate a color image
without degrading its content. In this work we follow the recent
advancements made on fully automated generative methods using
deep convolutional neural networks, but hybrid methods using
deep learning in a user in the loop framework should also be men-
tioned [4, 12, 33, 42]. In [41], the authors trained with supervision a
network similar to FCN [23] to regress the AB channels (from LAB
color space) of a grayscale image. In [13], the authors proposed to
combine multi-level features in an encoder-decoder network, also
to regress the AB channels. The multi-level features were obtained
from different yet linked deep convolutional branches all trained
in a supervised end-to-end fashion. In [2], the authors proposed
to learn an attention Gated Recurrent Unit encoder to generate
color palettes from text and further perform palette-constrained
colorization, in a very similar manner to the integration of global
hints (i.e., histograms) for deep colorization proposed in [42]. Our
work is closer to [32], where the authors learned an unsupervised
cyclic network based on [45] to colorize Very High Resolution his-
torical aerial images using recent color acquisitions and texture
replacement. However, in this study, we propose to assess whether
a Handcrafted Translation could be used as a surrogate component
for one of the two DCGANs in such a cyclic network applied to
colorization.

Spatial pyramids are commonly used to generate multi-scale
representations and perform advanced tasks like object detection
or features matching [24, 44]. Recently, perceptual loss [8] was



proposed to constrain the training of generative models by inte-
grating the weighted difference of multi-layer representations of
two images passed in a pre-trained network. In parallel, Feature
Spatial Pyramids (FSP) were developed to combine the predictions
made on deep features at multiple resolutions and thus improve
object detection accuracy by adding complementary convolutional
filters to an existing backbone network [20]. Hypercolumns [11]
were proposed to represent an image by stacking rescaled features
issued from multiple layers. They were then successfully applied to
colorization [18]. Output Spatial Pyramids (Section 3.2) resemble
FSP and Hypercolumns: They allow to constrain the optimization of
multi-scale features toward an expected representation. However,
they do not rely on stacked features nor selected features individu-
ally mapped (with 1x1 convolutions in FSP) from the latent space
of a backbone model to a pyramid. They are framed in a generative
framework assuming that all deep features in the decoder already
have the same number of channels to translate them at full resolu-
tion using a unique mapping function and constrain the training of
the generator.

3 CORE COMPONENTS
3.1 Handcrafted Translation
On the context of colorization, we recall that our goal is to learn
a black box model G that translates (i.e., G(.) defines the transla-
tion) a grayscale image from R1×W ×H (domain A) to a color image
R3×W ×H (domain B). For this purpose, Ht could be defined as a
handcrafted function that can perform the reverse translation, from
B to A. Since our goal is to colorize an image using an approximate
Handcrafted Translation to constrain the latent space of a genera-
tive network, and not the opposite, we propose to keepHt as simple
as possible by using one of the earliest representations of grayscale
intensities: the weighted sum of the RGB channels. We recall that,
for a pixel x i, j located at ith row and jth column in an image
I ∈ R3×W ×H , this operation is expressed by Equation (1), where
weights per channels roughly mimic human biological vision.

x
i, j
дray = 0.299 × x

i, j
R + 0.587 × x

i, j
G + 0.114 × x

i, j
B (1)

As this function represents a weighted sum of the color channels
with constant weights, it could be applied easily through a deter-
ministic non-trainable 1x1 convolution. As a 1x1 convolution, it has
the benefit to preserve most of the spatial properties of its input,
like shapes, textures and contours. Consequently, formulating this
Handcrafted Translation as a non-trainable 1x1 convolution allows
to directly constrain the spatial properties of the generated color
images in the latent space. This operation should be opposed to the
learned translations made of spatial convolutions [45]. When using
learned spatial filters optimized without supervision, there is no
guarantee that the translation will preserve spatial structures and
high frequency properties, because (1) the spatial convolutions tend
to generate smooth images [36], and (2) the generatorsG and F may
learn to satisfy a criterion without seeking for spatial structures
consistency between the translated domains, thus hallucinating
spatial structures that do not exist [14]. Note that by construction,
identity loss could help against these phenomenon. These two prop-
erties are particularly interesting in applications like denoising [38],
semantic segmentation [1] or object morphing [30], but they are

Figure 3: Schematic of the Output Spatial Pyramids. S de-
notes the scale of the input image (W ×H ). Rescaling (upsam-
pling) is performed with a classical interpolation. Mapping
is performed from feature spaces to output domain B.

undesired when we want both domains to share fine grained spatial
properties, like in colorization.

Finally, one may observe that the above formulation targets the
generation of RGB images, while previous studies on colorization
demonstrated the efficiency to learn generative models targeting
the Lab or theHCL color spaces by decoupling intensity and chroma
[13, 18]. We made this choice because these color spaces do not
allow the use of a simple linear Handcrafted Translation from (gen-
erated) color components (e.g., ab channels) to a lightness/grayscale
component (e.g., L channel) as defined by equation (1), which is the
purpose of our study.

3.2 Output Spatial Pyramids
In this study, we propose Output Spatial Pyramids (OSP ) to jointly
constrain the deep features of a generative model toward a single
scale objective (Figure 3).

LetG be a convolutional encoder-decoder network from domain
A to B, framed in the context of image-to-image translation. Let S
be the scaleW ×H (width × height) of an image I ∈ A. A general
practice is to optimize the weights of G based on the gradient
of a loss function L calculated from the final/most outer output
Od1 , whose scale equals S . Od1 is generated from layer ld1 of the
decoder (subscript d) ofG, and it is expected to be represented in
domain B. At the end of the training stage, all the weights of G
should have been optimized to produce anOd1 that is as realistic as
possible according to an optimization criterion. However, reaching
an optimal state in the inner layers of the decoder {ld2 , ..., ldN }may
be difficult when a large quantity of parameters is involved.

To help the training of G, and thus the generation of realistic
images, we propose to also integrate the early outputs of the decoder,
{Od2 , ...,OdN } in the loss functions (Section 4.2). However, sinceG
is phrased in an encoder-decoder manner, successive outputs Odi
and Odj , with i ∈ {1, ..,N − 1}, j = i + 1, differ by a scale factor. In
the following, we will assume a typical scale factor equals to 2. To
prevent the loss of details that would occur on proxy ground truth
I by gradually downsampling it to match the scales of each of the
early outputs, we rather prefer to upsample the early outputs to
I ’s scale before translating them in domain B. Our approach allows
to use a single, scale consistent, discriminator for all the outputs,
as opposed to [7, 37]. We define an upsampling function up(.) that



Figure 4: Schematic of our SpyncoGan with N = 3 in OSP and a non-trainable Handcrafted Translation Ht from color to
grayscale domain. (a) pseudo-cyclic generator, (b) discriminator. Parameters n denote the number of convolutional filters (e.g.,
n256 indicates 256 filters), k their square spatial dimension, s the stride value and u the upsampling value.

transforms an image from a scale S
2 to S . This function could be

implemented either with a trained super-resolution network or with
a more classical interpolation (e.g., nearest neighbors or bilinear
interpolation). Equation (2) denotes the upsampling process applied
onOdi using function composition notations (application of up(.) i
times).

OW ×H
di

= upi−1(Odi ), i ∈ {1, ...,N } (2)

Once early outputs are upsampled in the deep features space, we
need to map them to domain B to further calculate a loss func-
tion and backpropagate the gradient. Such a mapping could be
performed with per-output convolutional layers, similarly to the
hypercolumns [11]. However, we do not try to combine deep fea-
tures together, but we rather want to generate a realistic image
from each deep feature separately. Whether different convolutional
filters would be used for different outputs, we cannot be sure that
the mappings they will learn will be similar. By extension, we can-
not ascertain that the deep representations would be targeting the
same objective at different scales by looking at the outputs of the
mappings.

Since we want to constrain early features toward a same plau-
sible result starting from the embedding to gradually improve the
final output, we instead propose to use a single convolutional map-
ping layer with shared weights for all theOW ×H

di
. While we borrow

the single mapping idea from the shared regression used FSP [20],
we propose to keep the number of features n constant all along the
decoder instead of relying on intermediate 1x1 convolutions to han-
dle different number of features at different layers. This approach
has two main advantages in the context of image translation: (1)
early deep representations are spatially constrained, and (2) we may
ascertain that they are representing relevant characteristics for a
final task at hand (e.g., colorization, segmentation) by visualizing
them through the mapping without introducing additional com-
plexity. In practice, OSP could be understood as a joint constraint
on the generator whose intermediate representations target the

same objective. In other words, if early features already permit to
obtain a perfectly generated image from a discriminator viewpoint,
deeper layers would only need to super-resolute the features.

4 SPYNCOGAN
We present SpyncoGan (Spynco for Spatial PYramids and haNd-
crafted translation COmbined), a pseudo cyclic network usingHand-
crafted Translation and Output Spatial Pyramids (OSP ) as building
blocks. The architecture of a SpyncoGan is presented on Figure
4 with an application to colorization. It could be applied to other
generative tasks by carefully redefining Ht (i.e., one may need the
re-define Ht for other applications).

4.1 Model Architecture
SpyncoGan is composed of convolutional blocks, each made of a
convolutional layer, an instance normalization layer (IN ) and a
ReLu unit. Instance normalization was chosen for its interesting
properties in generative tasks compared to batch normalization [35].
Padding, matching half the filter’s size k , is systematically applied
before a convolution. Downsampling is performed using the stride
value when applying convolutional filters (Figure 4). Upsampling
is performed with an interpolation before applying a convolution
instead of a transposed convolution to reduce the checkerboard
artifact effect in the outer outputs [28]. We use separable convolu-
tions [26] in downsampling and upsampling layers of SpyncoGan
to reduce the number of learnable parameters. We keep classical
convolutions in the residual layers because of their ability to learn
an identity mapping through the skipped connections. We did not
apply depthwise nor grouped convolutions. For the sake of reduc-
ing the number of hyperparameters, we use a constant number of
output (N = 3) in the Output Spatial Pyramids of SpyncoGan. We
use a constant number of convolutional filters n = 256 in the resid-
ual layers and in the decoder/upsampling layers. We implement the
mapping from the deep feature spaces to domain B with a single



convolution, which shares its weights with all the outputs of the
pyramid to constrain the relationships between successive deep
feature spaces.

As opposed to classical cyclic networks, we point out that Spynco-
Gan relies on a single discriminator and a single generator (instead
of two), making it fairly similar to a classical DCGAN, except for
the cyclic and multi-scale constraints we impose with proposed
Ht and OSP . In particular, we replace the second generator of a
cyclic network by the Handcrafted Translation defined in section 3,
and we discard the second discriminator since we assume the prior
knowledge contained in non-trainable Ht is enough. SpyncoGan
has a total of ≈ 7.063 million parameters to optimize, including
≈ 4.978 million parameters for the generator and ≈ 2.085 million
parameters for the discriminator. Handcrafted Translation is made
of 3 non-trainable parameters that are shared among all the outputs
of OSP .

As described above, we would like to draw the attention of the
reader to the fact that we are using a fixed number of convolutional
filters n in the upsampling layers (decoder), which is a requirement
to learn a single mapping function with the OSP . By design, this
approach increases the memory needed to train the generator com-
pared with the classical depth/scale ratio (the higher the scale, the
less the number of features). This increase is partially absorbed by
the separable convolutions and Ht , but it may prevent the training
of SpyncoGan-like networks with very deep architectures.

4.2 Loss Functions
In this section, we define the loss functions we used to guide the
optimization of SpyncoGan.

We recall that I ∈ A and J ∈ B are two images of scale S =W ×H .
From the OSP of G(I ), we get N outputs OW ×H

di
as defined by

Equation (3). These outputs all have the same scale as I and J
after consecutive rescalings. The whole point of these outputs is to
optimize the intermediate deep feature spaces by integrating them
in the loss functions.

{OW ×H
d1

, ...,OW ×H
dN

} = {G1(I
W ×H ), ...,GN (IW ×H )} = G(IW ×H )

(3)
where ∀i ∈ {1, ...,N },OW ×H

di
∈ B, and Gi represents the output i

of the OSP of G (i.e., OW ×H
di

).
For the sake of concision, the remaining of this paper will omit

the superscriptW × H , supposed always present for I and J , and
notation Gi (.) will be used instead of OW ×H

di
when appropriate.

Additionally, we will consider αi , βi , γi and ζi as constant mul-
tiplicative factors weighting the contribution of each output in
the loss functions. The values used for these parameters in our
experiments are detailed in section 5.2, alongside the empirical
considerations behind them.

Identity loss [45] aims to avoid mode collapse by seeking inter-
domain identity. In Equation (4), we re-frame it as a sum of loss
functions calculated on the Output Spatial Pyramid. Note that to
apply the identity loss, we have to consider images from domain
A and B with the same number of channels (for colorization, this
is achieved by artificially replicating single channel grayscale data

Figure 5: Qualitative results obtained along the training of
SpyncoGan on Cifar-10.

over three channels).

L
1, ...,N
identity (G) =

N∑
i=1

αiEB [∥Gi (J ) − J ∥1] (4)

Similarly, cycle consistency is defined with the cycle loss of
Equation (5), sum of (6) and (7). It aims to constrain the latent
spaces using inputs from both domains as proxy ground truths.

L
1, ...,N
cycle (G) = L

1, ...,N
cycleBAB

(G) + L
1, ...,N
cycleABA

(G) (5)

L
1, ...,N
cycleBAB

(G) =
N∑
i=1

βiEB [∥(Gi (Ht (J )) − J ]∥1] (6)

L
1, ...,N
cycleABA

(G) =
N∑
i=1

βiEA[∥Ht (Gi (I )) − I ∥1] (7)

GAN loss is defined by Equation (8)1. It penalizes the generator
and rewards the discriminator when the discriminator is successful
at classifying generated images from real images [10]. It constrains
the generation of images similar to domain B images. Since we
are using a Handcrafted Translation from domain B to domain A,
there is no need for a discriminator applied on domain A images: if
the images generated by G are able to fool the discriminator, we
suppose a priori that the Handcrafted Translation will successfully
translate them to domain A.

L
1, ...,N
GAN (G,D) =

N∑
i=1

γiEA[∥1−D(Gi (I ))∥
2
2 ]+EB [∥D(J )∥

2
2 ] (8)

1Errata: correct EB to EA ; add 2 to better match concrete implementation.



Additionally, we make use of the direct spatial relationship per-
mitted by the Handcrafted Translation to constrain the generation
of realistic contours. To this aim, we introduce contours loss (Equa-
tion (9)). Contours loss is similar to a classical spatial gradient loss
(i.e., total variation), but using the Sobel kernel Sk (.) to retrieve
the contours. Sk (.) is easily applicable with convolutions. It is also
symmetric, defined horizontally as well as vertically, so that it gives
more importance to the central pixels resulting in contours that
should be more precisely located than with a total variation loss.

L
1, ...,N
contours (G) =

N∑
i=1

ζiEA[∥Sk (Ht (Gi (I ))) − Sk (I )∥1] (9)

Total loss L1, ...,N is a raw sum of above Equations (4), (5), (8), (9).

5 EXPERIMENTS
Our goal is to assess the effectiveness of the Handcrafted Transla-
tion as a replacement for one of the generator-discriminator in a
cyclic model, tasked with an unsupervised colorization problem.
We also seek to assess the contribution of the early outputs gener-
ated by theOSP . Experiments were carried out on 2 GPUs GeForce
1080 Ti with Pytorch, Scikit, Caffe and OpenCV libraries.

5.1 Datasets
To evaluate the quality of the colorization, we adapt classical datasets
used in classification problems: Cifar-10 [15] and UCMerced Land
Use [40]. Cifar-10 dataset contains 60 000 image instances of 10
objects in a thumbnails fashion (32 × 32 pixels). UCMerced Land
Use images represent 24 remotely sensed structures from a bird’s
eye viewpoint (256 × 256 pixels). Complementary experiments are
carried out on Cezanne paintings and Landscape photos [14] (no
classification, 256× 256 pixels). Since these datasets represent color
images, we first translate them to grayscale. However, because our
approach is defined in an unsupervised setup, we recall that the
images are not explicitly paired during training nor during testing
to simulate unsupervised learning. In practice, colorization training
is performed on the train data. Evaluation is performed on test
data unseen during training. For Cifar-10, Cezanne paintings and
Landscape photos datasets, provided train/test splits are used. For
UCMerced Land Use dataset, we randomly sampled 80% of the
images for training and 20% for testing (no default train/test splits).

5.2 SpyncoGan parameters
Loss function parameters of SpyncoGan (αi , βi , γi , ζi ) were fixed
empirically to give more importance to the final output. This choice
was made to counterbalance the contribution of the most inner
layers which is taken into account multiple times in the loss func-
tions due to OSP (i.e., OW ×H

di
is calculated from Odi+1 ). They have

been set as follow by considering N = 3 as stated in section 4:
αi ∈{1,2,3} = {5, 3, 2}, βi ∈{1,2,3} = {10, 6, 4}, γi ∈{1,2,3} = {1, 1, 1}
and ζi ∈{1,2,3} = {1, 0, 0}, where i is the decoder layer index. Note
that because of ζi , only the final output explicitly constrains the
contours. This choice was made to not taking contours loss into
account for the most inner outputs, that are more prone to visual
artifacts (e.g., checkerboard).

5.3 Metrics
Evaluation of colorization quality is performed every 10 epochs to
quantify the evolution of the metrics during training. We calculate
the Mean Square Error (MSE) and the Structural Similarity Measure
(SSIM) averaged in the (three) channels dimension between col-
orized and real color images. The MSE allows to roughly determine
how different two images are (the lower the better): this metric is
commonly used to evaluate the results of regression algorithms,
and its monotonic variant (root MSE, RMSE) was already applied
to evaluate colorization algorithms [18]. The SSIM indicates the
perceived quality of an image relative to another (the higher the
better), with a focus on the structural differences. Overall, these
metrics provide an insight about colorization quality when real
color images are available (case of our datasets).

In addition, we evaluate whether colorization with a pseudo-
cyclic network could result in accuracy gain in the context of clas-
sification. In particular, we propose to assess how robust a classifi-
cation network would be to color spaces when trained on colorized
images by supposing the images generated by SpyncoGan at ev-
ery 10 epochs as lying on slightly different color manifolds (i.e.,
domains). This observation can be verified empirically on Figure 5
and in the supplementary materials2. To evaluate it, we train stan-
dard classification networks on colorized, real color and grayscale
training sets of the classification datasets, and we evaluate them in
a cross-domain (color space) fashion on all the real and generated
test sets. We use AlexNet with batch normalization [16] on Cifar-
10 and VGG-16 [34] on UCMerced Land Use to evaluate different
architectures while keeping a relatively small computation time.
We feed these networks with images rescaled to 256x256 pixels.
Learning rate was fixed to 0.0001 with a 0.1 step decay applied at
33% and 66% of training advancement for a total of 20 and 40 epochs
respectively.

6 RESULTS AND DISCUSSION
6.1 Qualitative results for SpyncoGan
Figure 1 presents the qualitative results obtained on the test sets
of Cezanne paintings, Landscape photos and UCMerced Land Use
datasets. We believe these results look very realistic for an unsu-
pervised approach. More results are available in the supplemen-
tary materials. Figure 5 shows the qualitative results obtained with
SpyncoGan on three image samples of Cifar-10. From top to bottom,
images represent grayscale (domain A), colorized and real color
(domain B) images. Colorized images on different rows have been
generated at different epochs (from 10 to 100 with a step of 10).
From left to right, we present OSP ’s results, namely G3(I ), G2(I )
and G1(I ). From an overall perspective, we observe checkerboard
artifacts on G3(I ) images (most left image) that remains along the
training. They seem to have been filtered out by the deeper layers,
which is the expected behavior for our network. However, since
G3(I ) was directly obtained from the deep residual layers after
rescaling and a spatial convolution; whose weights are shared be-
tween all outputs; we believe that the residual layers were either
unable to learn a sufficient representation to discard the artifacts
caused by down and up sampling, or caused the artifact themselves.

2http://liris.univ-lyon2.fr/SpyncoGan/files/ratajczak-SpyncoGan19supp.pdf



Figure 6: Mean Square Error (MSE) and Structural Similarity Measure (SSIM) between generated images and real color images
from the test sets of Cifar-10 (a,b), UCMerced Land Use (c,d), Cezanne paintings (e,f) and Landscape photos (g,h).

Table 1: Results of output ablation with SpyncoGan (G1(I )).
Scores are averaged over 50 epochs.

Dataset Loss function Avg. MSE ↓ Avg. SSIM (%) ↑

Cezanne paintings L1 92.9 82
Cezanne paintings L1,2,3 91.5 82
Landscape photos L1 85.7 83
Landscape photos L1,2,3 85.1 83

UCMerced Land Use L1 85.5 86
UCMerced Land Use L1,2,3 83.1 85

Cifar-10 L1 87.2 89
Cifar-10 L1,2,3 86.8 89

Both cases are highly interesting knowing that the residual layers
(6 convolutional blocks) are not prone to generate such artifacts
since they do not rescale their input features.

6.2 Quantitative Evaluation
6.2.1 Output and Loss Ablation Study. We assess the usefulness of
OSP by training SpyncoGan considering N = 1 in the loss functions
(i.e., L1) instead of N = 3 (i.e., L1,2,3). We name this evaluation
output ablation. To this end, we use the architecture of SpyncoGan
presented in Section 4, meaning that all 3 outputs from theOSP are
available, but only last outputG1(I ) is used for training. We also per-
form loss ablation to investigate the contributions of contours loss
L
1, ...,N
contours to total loss L

1, ...,N . Table 1 and Table 2 presents the
average MSE and SSIM scores from epochs 10 to 50 with a step of
10 epochs. We observe on Table 1 that using all the N = 3 outputs
to constrain SpyncoGan improves MSE by 1.2 points in average
at the cost of a small SSIM decrease of 0.25% in average. Overall,
giving less freedom to the inner layers through the OSP seems to
increase colorization consistency with respect to real color images.
Despite the small contribution of L1, ...,N

contours in total loss induced
by a relatively small ζi , we observe on Table 2 that removing the

Table 2: Results of contours loss ablation with SpyncoGan
(G1(I )) on Cezanne paintings averaged over 50 epochs.

Loss function Ablation Avg. MSE ↓ Avg. SSIM (%) ↑

L1 L1
contours 92.6 79

L1 / 92.9 82
L1,2,3 L

1,2,3
contours 92.0 77

L1,2,3 / 91.5 82

constraint imposed on the contours significantly reduce structural
similarity. As expected, constraining the generation of realistic con-
tours, as permitted by Ht , helps to preserve structural properties
even without OSP . However, we observed unrealistic (deep) visu-
alization for the inner outputs of SpyncoGan trained with L1, as
opposed to the somewhat realistic visualization obtained for G2(I )
and G3(I ) with L1,2,3 (see supplementary materials).

6.2.2 Unsupervised ColorizationQuality. Figure 6 displays the MSE
and SSIM scores along the training for SpyncoGan (G3(I ), G2(I ),
G1(I )) and Col-Cycle [32]. We selected Col-Cycle as our baseline
because it has a relatively small (fully) cyclic architecture that is
comparable with SpyncoGan. Both networks use nearest neighbor
interpolation before convolution for upsampling, and they have
the same number of layers with same number of filters but for
Ht and OSP : Col-Cycle is composed of two DCGANs and has a
decreasing number of filters in its decoders, like CycleGan [45].
The networks were trained in the same conditions for 100 epochs
(but 50 for Landscape photos) with learning rate of 0.0002 and
linear learning rate decay applied after half the epochs have passed.
Overall, by considering both metrics and all epochs, we observe
that the outputs of SpyncoGan result in lower MSE and higher
SSIM than Col-Cycle. They allow to obtain colorized images that
are more satisfying than Col-Cycle from a realistic colorization



Figure 7: Chord diagram highlighting first quarter (color chords) of top-1 accuracy in cross-domain classification on (a)
UCMerced Land Use and (b) Cifar-10 datasets with G1(I ). R-G is Real-Gray. R-C is Real-Color. [Numbers] indicate epochs.

perspective, as well as from a structure preserving viewpoint. In
particular, we observe that the quality of Gi (I ) generally increases
with 1

i . In accordance with the results presented in Sections 6.1
and 6.2.1, we may conclude the following two points. First, in the
context of colorization, Handcrafted Translation is an effective
lightweight alternative to a second generator-discriminator in cyclic
networks, thus showing the interest of pseudo-cyclic architectures.
Second, the Output Spatial Pyramids are, as expected, constraining
early deep features in the same directions, permitting a gradual
improvement of the results. However, Figure 6 (a), (c) and (g) shows
that G2(I ) sometimes achieves equal or smaller MSE scores than
G1(I ). Based on Figure 5, we point out that there there is less color
diversity on G2(I ) than on G1(I ), which may explain MSE score
variations (less diversity reduce potential errors). We believe these
results are due to the intrinsic nature of the Output Spatial Pyramids,
that generate more constraints on the inner layers in regard to real
color images. Nonetheless, since the SSIM is higher onG1(I ) than on
G2(I ), these constraints seem not to be always sufficient to improve
the structural similarly without additional convolutional filters after
upsampling.

6.2.3 Classification accuracy. We study how a classification net-
work generalizes to different colors spaces (i.e., domains) when
trained on colorized images. We report cross-domain classification
results (i.e., classification network trained on a single color space,
tested on all color spaces) forG1(I ) on Figure 7 with chord diagrams
[17]. Each chord indicates a classification relationship between two
image sets (arcs). Only the 25% highest accuracy rates are repre-
sented with color chords. A chord attached to an arc indicates the
image set (arc) used for training. A chord separated with a blank
space from an arc indicates the image set (arc) used for testing.
This visualization allows to quickly identify the image sets that are
more prone to make a network generalize well to slightly different
color spaces, as well as on which image sets it does generalize well:
one only needs to count the number of color chords starting or
ending from each image set. The training set with the highest num-
ber of starting chords allows the best generalization. We observe
that training VGG-16 with G1(I ) at colorization epoch 70 allows a

Table 3: Top-1 accuracy (%) in cross domain setup with VGG-
16 for 40 epochs on UCMerced Land Use (1) and AlexNet for
20 epochs on Cifar-10 (2). Accuracy is averaged on all real
and colorized datasets.

Training Set Col. Epoch Avg. % (1) Avg. % (2)

SpyncoGan (G1(I )) 70 97.0 78.7
SpyncoGan (G1(I )) 100 95.1 81.0

Real Color / 92.4 75.7
Real Gray / 92.5 22.1

better generalization on UCMerced Land Use than training it with
any other color space, including the real color space. For Cifar-10,
G1(I ) at colorization epoch 100 results in a better generalization
of AlexNet. We ascertain these observations by calculating the av-
erage accuracy obtained by a trained network when classifying
all the other datasets on Table 3. These results show that training
a classification network on colorized images tend to improve its
overall robustness to different color spaces compared to training
only on real color images.

7 CONCLUSION
In this study, we presented a novel unsupervised representation
learning approach for colorization by introducing the Handcrafted
Translation and Output Spatial Pyramids in a Pseudo-Cyclic Net-
work that jointly constrain the optimization of the deep features.
We demonstrated the effectiveness of our approach in the genera-
tion of realistic and structurally-preserved color images along the
training. We also showed that the generated images are prone to
make a classification network generalize to slightly different color
spaces. In future work, we will investigate the possibility to guide a
generative network toward multi-modal spaces with Handcrafted
Translation, resulting in different and always more varied repre-
sentations. In particular, we will investigate the applicability of our
approach to other generative tasks including hyper-spectral images
generation and semantic segmentation.



REFERENCES
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 39, 12 (2017), 2481–2495.

[2] Hyojin Bahng, Seungjoo Yoo, Wonwoong Cho, David Keetae Park, Ziming Wu,
Xiaojuan Ma, and Jaegul Choo. 2018. Coloring with Words: Guiding Image Col-
orization Through Text-based Palette Generation. In Proceedings of the European
Conference on Computer Vision (ECCV). 431–447.

[3] Stephen A Billings. 2013. Nonlinear System Identification. John Wiley & Sons,
Ltd. https://doi.org/10.1002/9781118535561

[4] Changjian Chen, Yi Xu, and Xiaokang Yang. 2019. User tailored colorization
using automatic scribbles and hierarchical features. Digital Signal Processing 87
(apr 2019), 155–165. https://doi.org/10.1016/j.dsp.2019.01.021

[5] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and
Jaegul Choo. 2018. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 8789–8797.

[6] U. Forssell and P. Lindskog. 1997. Combining Semi-Physical and Neural Network
Modeling: An Example ofIts Usefulness. IFAC Proceedings Volumes 30, 11 (jul
1997), 767–770. https://doi.org/10.1016/s1474-6670(17)42938-7

[7] Yan Gan, Junxin Gong, Mao Ye, Yang Qian, Kedi Liu, and Su Zhang. 2018. GANs
with Multiple Constraints for Image Translation. Complexity 2018 (dec 2018),
1–12. https://doi.org/10.1155/2018/4613935

[8] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style
Transfer Using Convolutional Neural Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, (CVPR). 2414–2423.
https://doi.org/10.1109/CVPR.2016.265

[9] Abel Gonzalez-Garcia, Joost van de Weijer, and Yoshua Bengio. 2018. Image-
to-image translation for cross-domain disentanglement. In Advances in Neural
Information Processing Systems (NeurIPS). 1287–1298.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversar-
ial Nets. In Advances in Neural Information Processing Systems (NIPS). Curran
Associates, Inc., 2672–2680.

[11] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. 2015.
Hypercolumns for object segmentation and fine-grained localization. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
447–456.

[12] Mingming He, Dongdong Chen, Jing Liao, Pedro V. Sander, and Lu Yuan. 2018.
Deep exemplar-based colorization. ACM Transactions on Graphics (TOG) 37, 4
(jul 2018), 1–16. https://doi.org/10.1145/3197517.3201365

[13] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2016. Let there be Color!:
Joint End-to-end Learning of Global and Local Image Priors for Automatic Image
Colorization with Simultaneous Classification. ACM Transactions on Graphics
(Proc. of SIGGRAPH 2016) 35, 4 (2016), 110:1–110:11.

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-To-
Image Translation With Conditional Adversarial Networks. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 1125–1134.

[15] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1
(NIPS’12). Curran Associates Inc., USA, 1097–1105. http://dl.acm.org/citation.
cfm?id=2999134.2999257

[17] Martin I Krzywinski, Jacqueline E Schein, Inanc Birol, Joseph Connors, Randy
Gascoyne, Doug Horsman, Steven J Jones, and Marco A Marra. 2009. Circos:
An information aesthetic for comparative genomics. Genome Research (2009).
https://doi.org/10.1101/gr.092759.109

[18] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. 2016. Learning
Representations for Automatic Colorization. In European Conference on Computer
Vision (ECCV). 577–593.

[19] Daoyu Lin, Kun Fu, Yang Wang, Guangluan Xu, and Xian Sun. 2017. MARTA
GANs: Unsupervised Representation Learning for Remote Sensing Image Classi-
fication. IEEE Geoscience and Remote Sensing Letters (2017).

[20] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature Pyramid Networks for Object Detection. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2117–2125.

[21] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised Image-to-Image
Translation Networks. In Advances in Neural Information Processing Systems 30,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.). Curran Associates, Inc., 700–708.

[22] Yu Liu, Yanming Guo, Wei Chen, and Michael S. Lew. 2018. An Extensive Study
of Cycle-Consistent Generative Networks for Image-to-Image Translation. In
24th International Conference on Pattern Recognition (ICPR). IEEE, 219–224. https:
//doi.org/10.1109/icpr.2018.8545089

[23] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 3431–3440.

[24] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60, 2 (2004), 91–110.

[25] ShuangMa, Jianlong Fu, ChangWen Chen, and TaoMei. 2018. DA-GAN: Instance-
level image translation by deep attention generative adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 5657–5666.

[26] Franck Mamalet and Christophe Garcia. 2012. Simplifying convnets for fast
learning. In International Conference on Artificial Neural Networks. Springer, 58–
–65.

[27] Henrik Aalborg Nielsen and Henrik Madsen. 2006. Modelling the heat consump-
tion in district heating systems using a grey-box approach. Energy and Buildings
38, 1 (jan 2006), 63–71. https://doi.org/10.1016/j.enbuild.2005.05.002

[28] Augustus Odena, Vincent Dumoulin, and Chris Olah. 2016. Deconvolution and
checkerboard artifacts. Distill 1, 10 (2016), e3.

[29] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. CoRR
abs/1511.06434 (2015). arXiv:1511.06434 http://arxiv.org/abs/1511.06434

[30] R Raghavendra, Kiran B Raja, Sushma Venkatesh, and Christoph Busch. 2017.
Transferable Deep-CNN features for detecting digital and print-scanned morphed
face images. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE, 1822–1830.

[31] Rémi Ratajczak, Carlos F Crispim-Junior, Élodie Faure, Béatrice Fervers, and Laure
Tougne. 2019. Automatic Land Cover Reconstruction From Historical Aerial
Images: An Evaluation of Features Extraction and Classification Algorithms. IEEE
Transactions on Image Processing (TIP) (2019). https://doi.org/10.1109/TIP.2019.
2896492

[32] Rémi Ratajczak, Carlos F Crispim-Junior, Élodie Faure, Béatrice Fervers, and
Laure Tougne. 2019. Toward an Unsupervised Colorization Framework for
Historical Land Use Classification. In International Geoscience and Remote Sensing
Symposium (IGARSS 2019). IEEE, Yokohama, Japan.

[33] Patsorn Sangkloy, Jingwan Lu, Chen Fang, FIsher Yu, and James Hays. 2017.
Scribbler: Controlling Deep Image Synthesis with Sketch and Color. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017),
5400–5409.

[34] K Simonyan and A Zisserman. 2014. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

[35] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normaliza-
tion: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022
(2016).

[36] D Ulyanov, A Vedaldi, and Lempitsky V S. 2017. Deep Image Prior. CoRR
abs/1711.10925 (2017).

[37] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-Resolution Image Synthesis and Semantic Manipulation
with Conditional GANs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 8798–8807.

[38] Junyuan Xie, Linli Xu, and Enhong Chen. 2012. Image denoising and inpainting
with deep neural networks. In Advances in neural information processing systems
(NIPS). 341–349.

[39] Xuewen Yang, Dongliang Xie, and Xin Wang. 2018. Crossing-Domain Generative
Adversarial Networks for Unsupervised Multi-Domain Image-to-Image Transla-
tion. In Proceedings of the 26th ACM International Conference on Multimedia (MM
’18). ACM, New York, NY, USA, 374–382. https://doi.org/10.1145/3240508.3240716

[40] Yi Yang and Shawn Newsam. 2010. Bag-of-visual-words and spatial extensions
for land-use classification. In Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, 270–279.

[41] Richard Zhang, Phillip Isola, and Alexei A Efros. 2016. Colorful image colorization.
In European Conference on Computer Vision (ECCV). Springer, 649–666.

[42] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin, Tianhe
Yu, and Alexei A Efros. 2017. Real-Time User-Guided Image Colorization with
Learned Deep Priors. ACM Transactions on Graphics (TOG) 9, 4 (2017).

[43] Yuheng Zhi, Huawei Wei, and Bingbing Ni. 2018. Structure Guided Photo-
realistic Style Transfer. In Proceedings of the 26th ACM International Confer-
ence on Multimedia (MM ’18). ACM, New York, NY, USA, 365–373. https:
//doi.org/10.1145/3240508.3240637

[44] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. 2009. Object tracking using SIFT
features and mean shift. Computer Vision and Image Understanding (CVIU) 113, 3
(2009), 345–352.

[45] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In
IEEE International Conference on Computer Vision (ICCV). 2223–2232.

https://doi.org/10.1002/9781118535561
https://doi.org/10.1016/j.dsp.2019.01.021
https://doi.org/10.1016/s1474-6670(17)42938-7
https://doi.org/10.1155/2018/4613935
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1145/3197517.3201365
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1101/gr.092759.109
https://doi.org/10.1109/icpr.2018.8545089
https://doi.org/10.1109/icpr.2018.8545089
https://doi.org/10.1016/j.enbuild.2005.05.002
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://doi.org/10.1109/TIP.2019.2896492
https://doi.org/10.1109/TIP.2019.2896492
https://doi.org/10.1145/3240508.3240716
https://doi.org/10.1145/3240508.3240637
https://doi.org/10.1145/3240508.3240637

	Abstract
	1 Introduction
	2 Related Work
	3 Core Components
	3.1 Handcrafted Translation
	3.2 Output Spatial Pyramids

	4 SpyncoGan
	4.1 Model Architecture
	4.2 Loss Functions

	5 Experiments
	5.1 Datasets
	5.2 SpyncoGan parameters
	5.3 Metrics

	6 Results and Discussion
	6.1 Qualitative results for SpyncoGan
	6.2 Quantitative Evaluation

	7 Conclusion
	References

