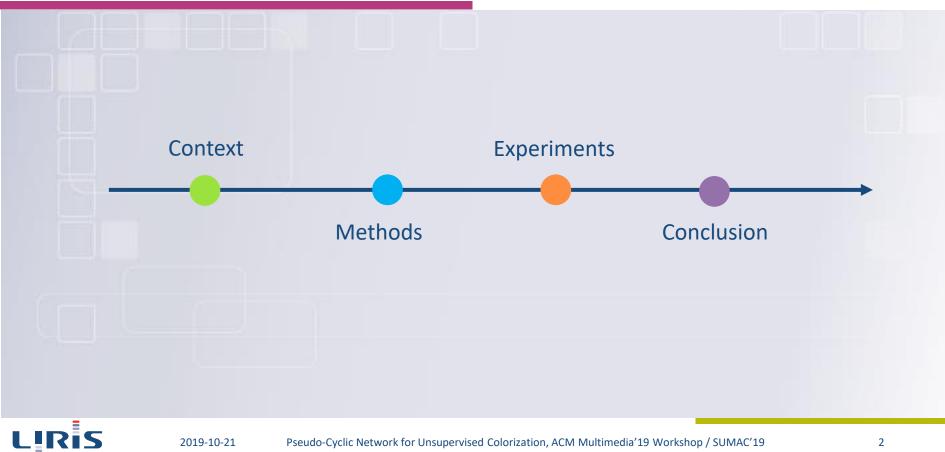


Pseudo-Cyclic Network for Unsupervised Colorization

R. Ratajczak*, C. Crispim-Junior, B. Fervers, E. Faure, L. Tougne

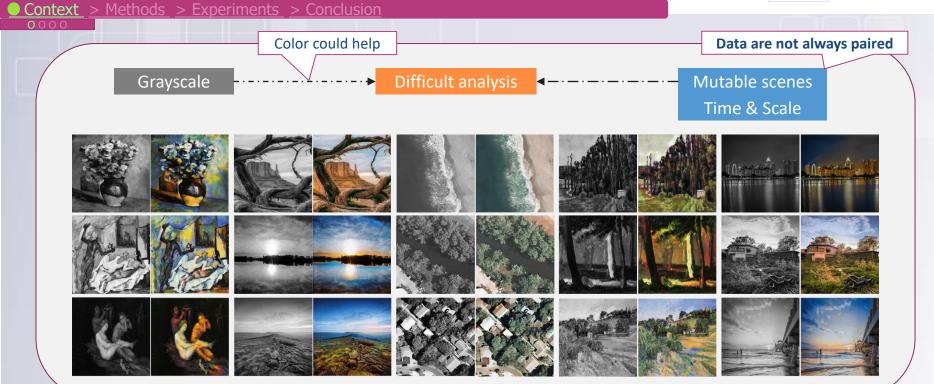


<u>Context</u> > Methods > Ex 0000	<u>xperiments > Conclusion</u>	
	Context	

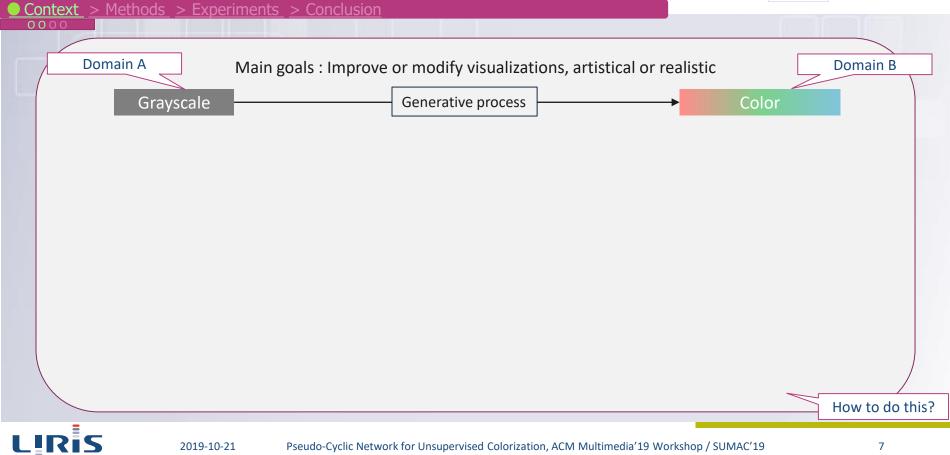
2019-10-21

2019-10-21

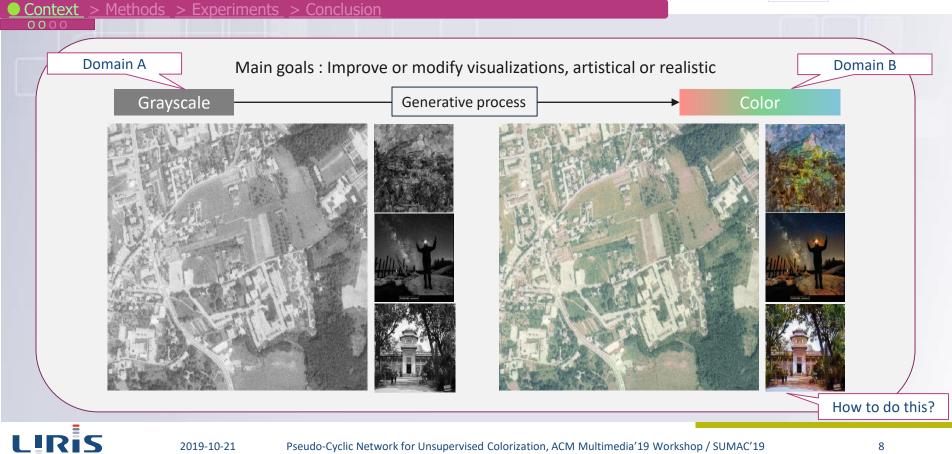
Hypothesis

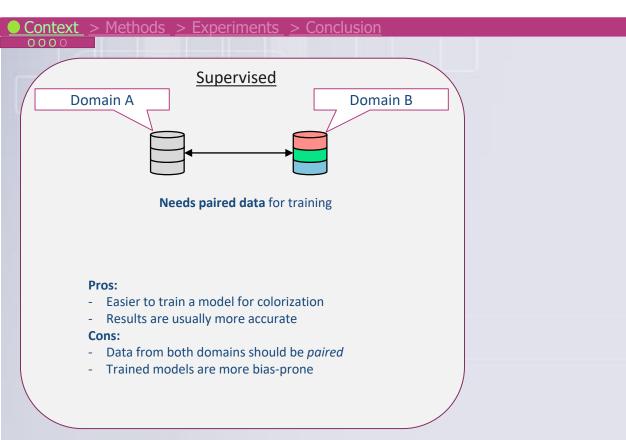


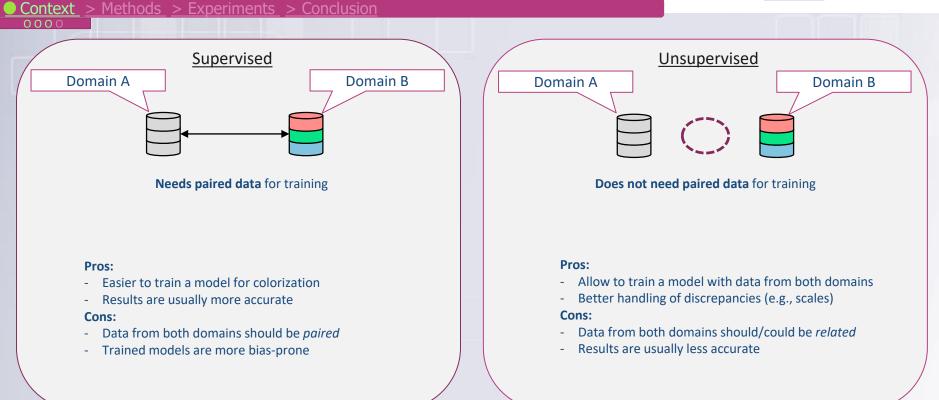
Colorization



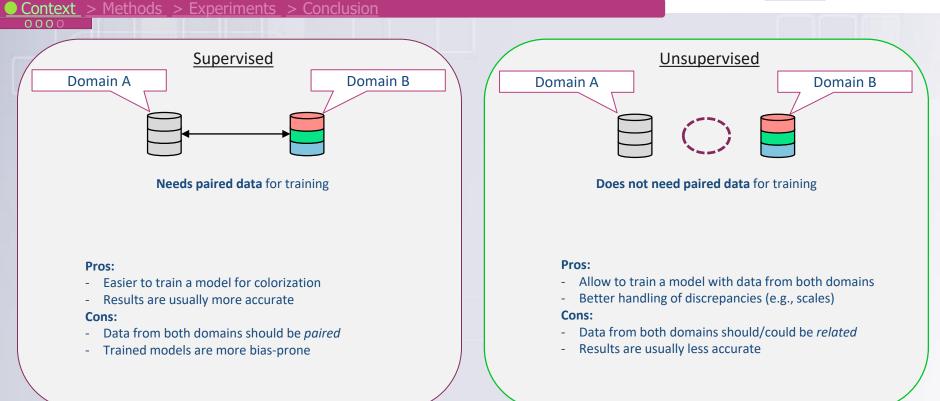
Colorization



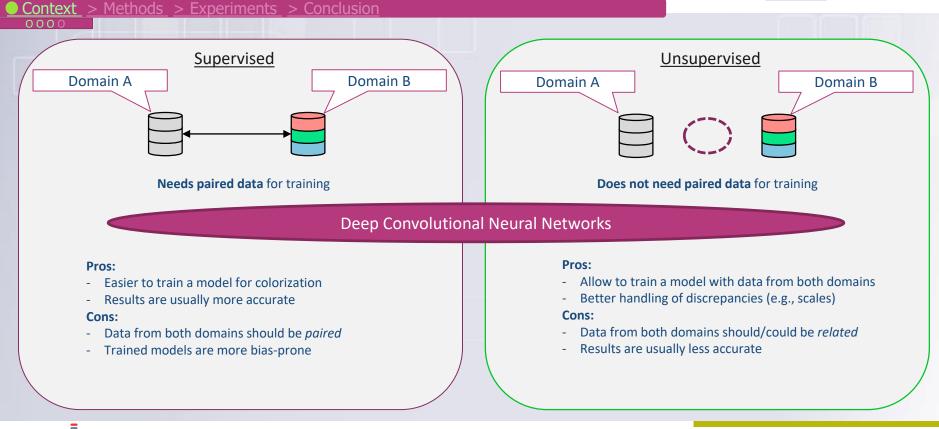


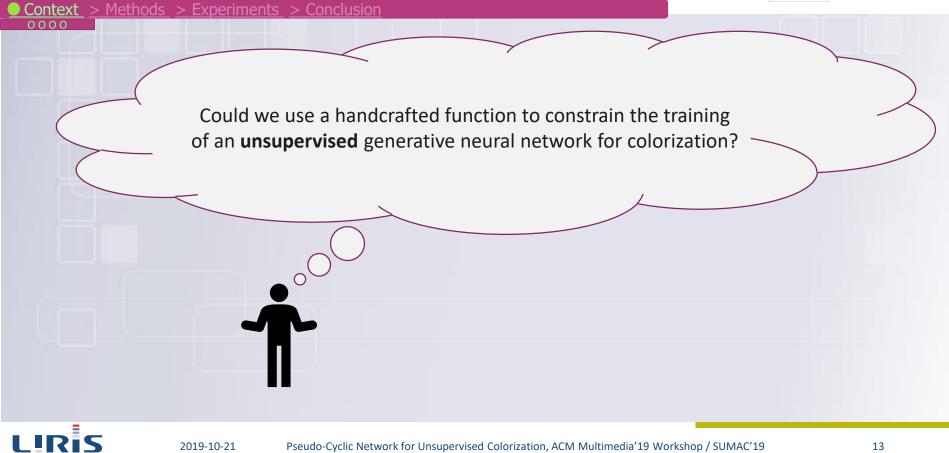


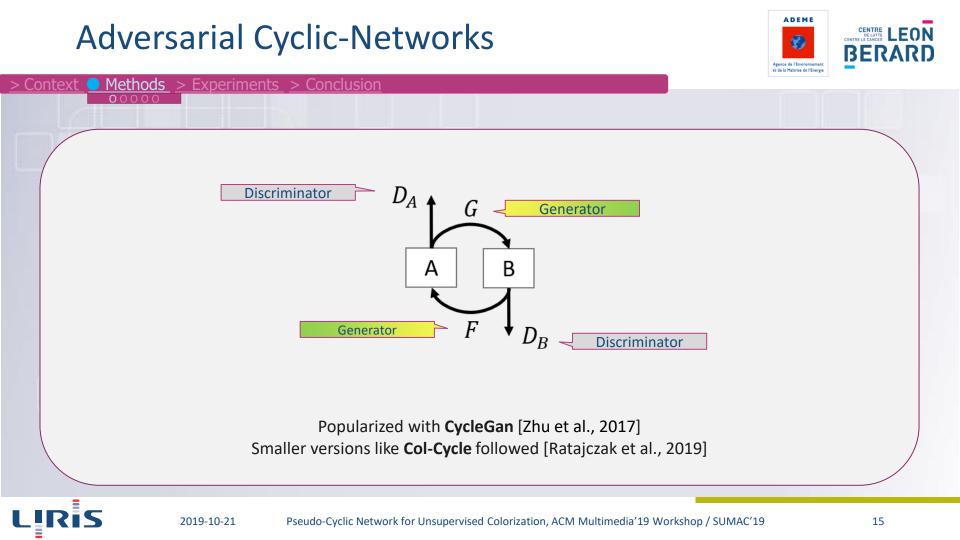
2019-10-21

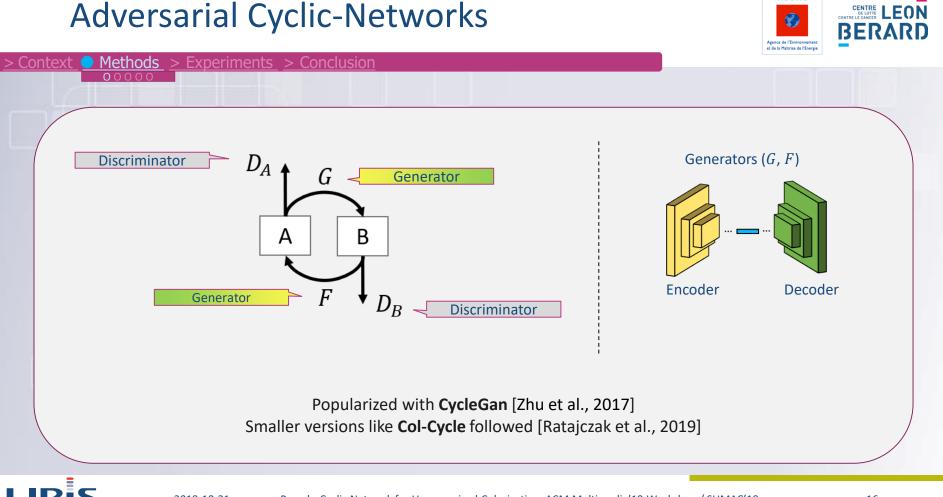


2019-10-21







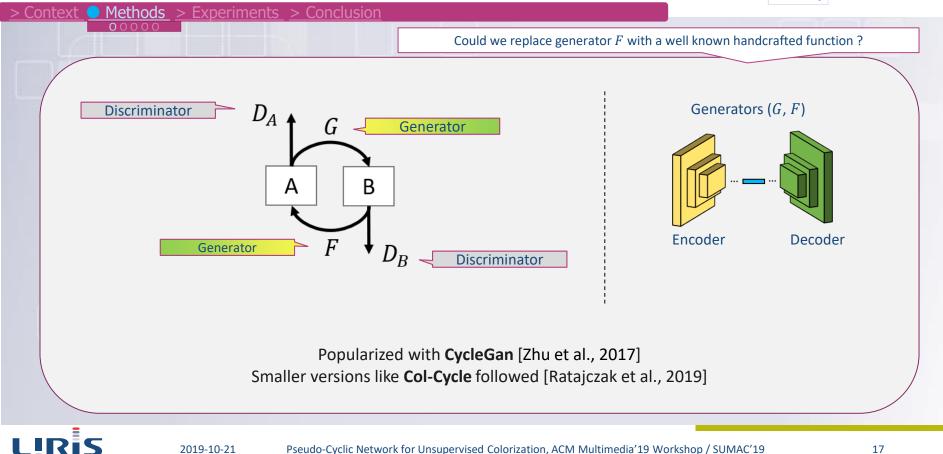


2019-10-21

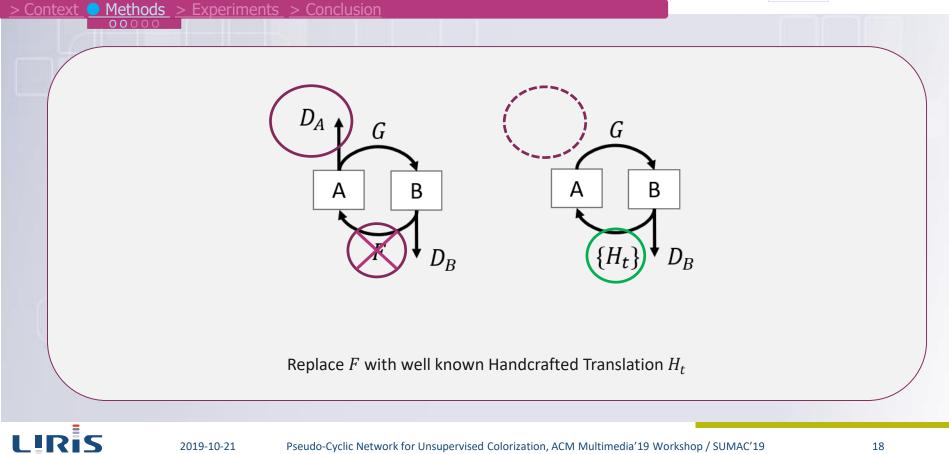
Pseudo-Cyclic Network for Unsupervised Colorization, ACM Multimedia'19 Workshop / SUMAC'19

ADEME

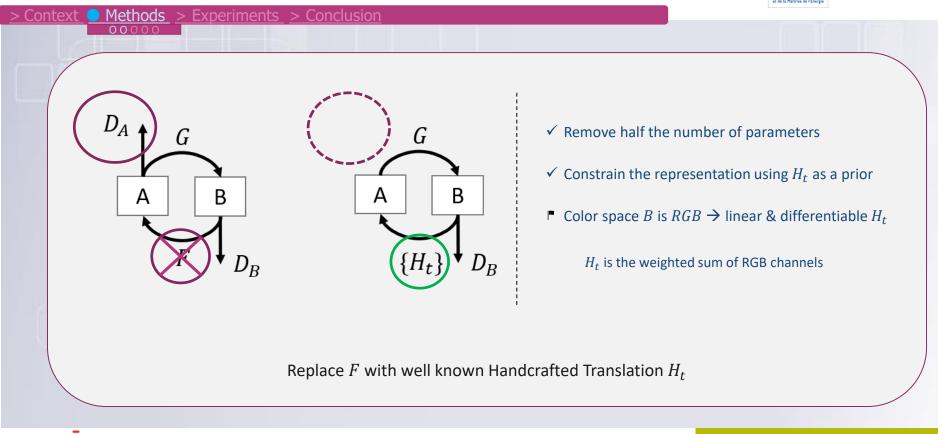
Adversarial Cyclic-Networks



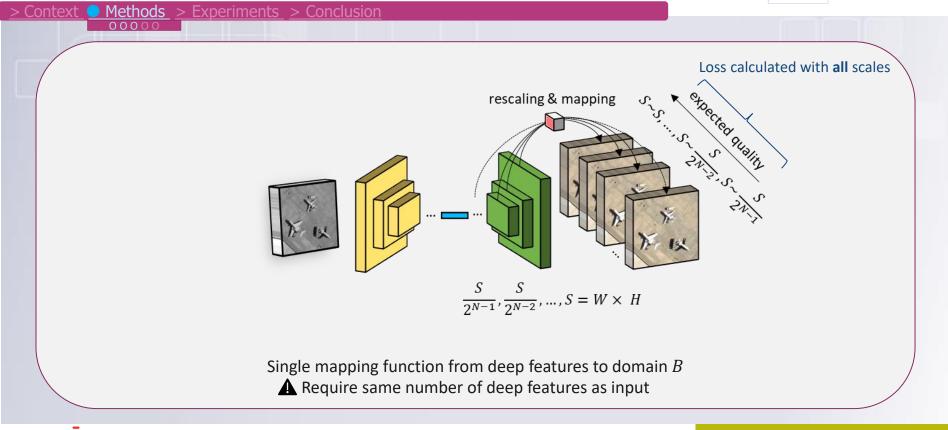
Rethinking the cycle for colorization



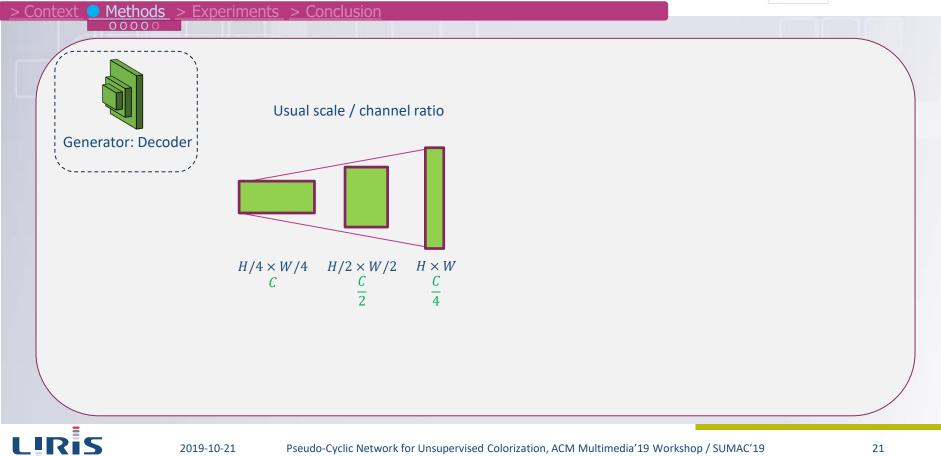
Rethinking the cycle for colorization



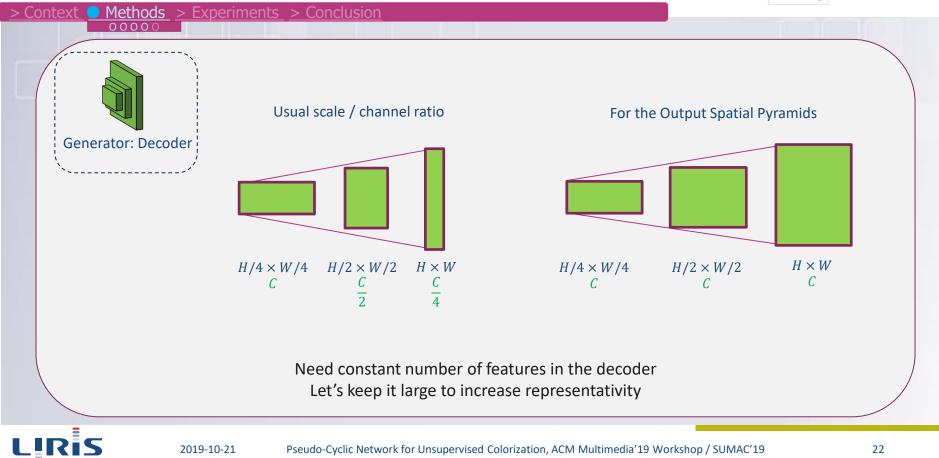
Output Spatial Pyramids (1/2)



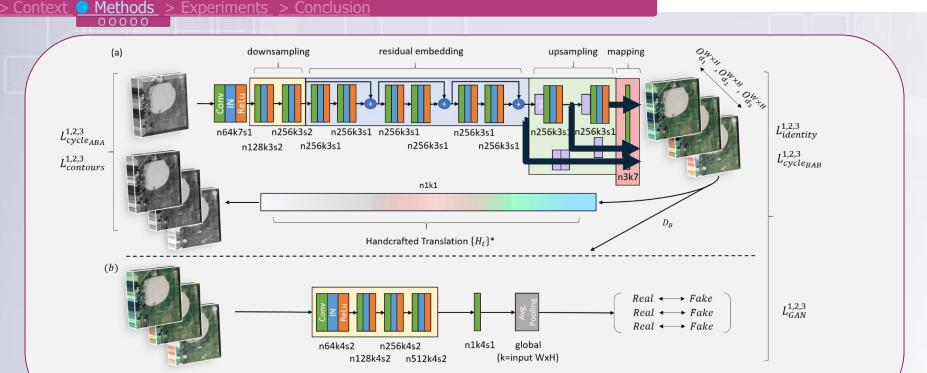
Output Spatial Pyramids (2/2)



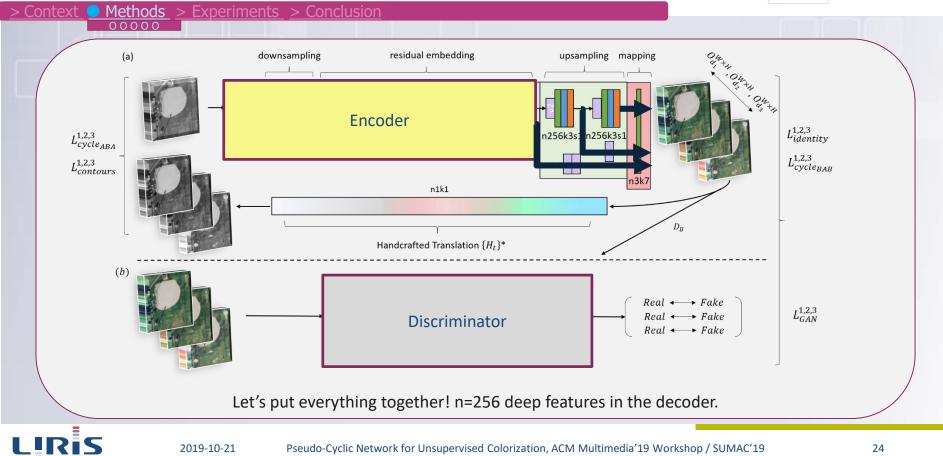
Output Spatial Pyramids (2/2)

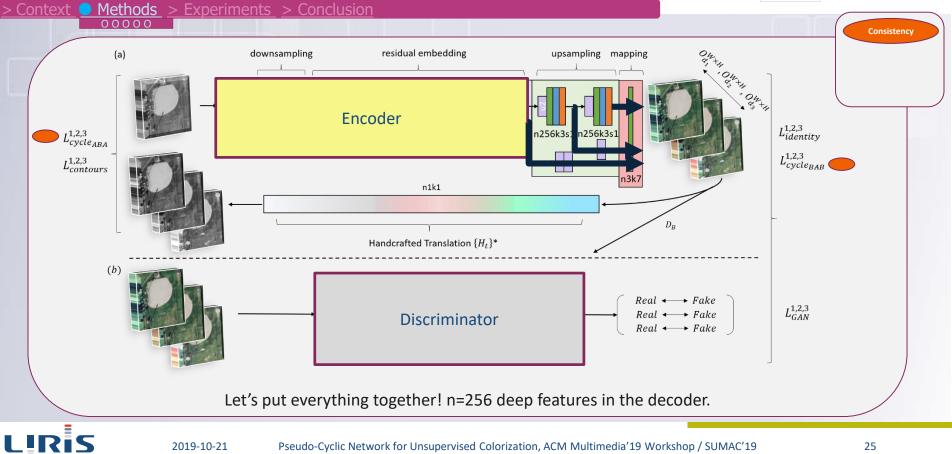


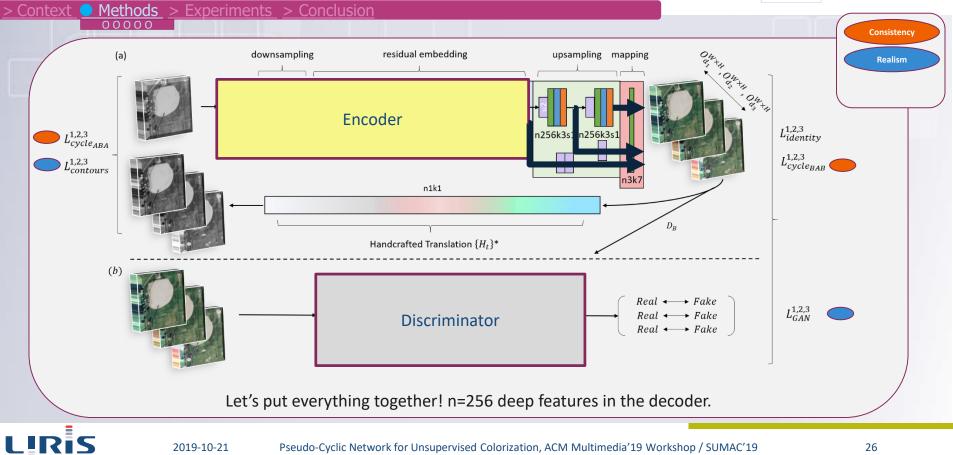
LIRIS

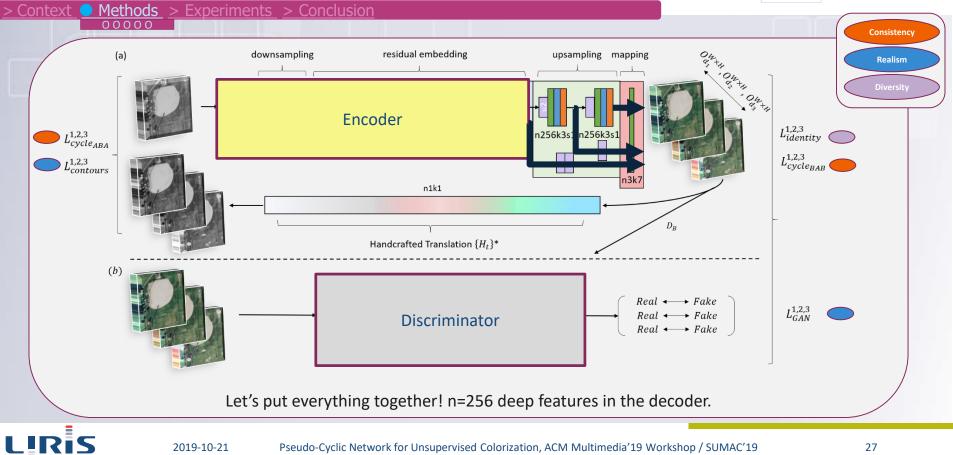


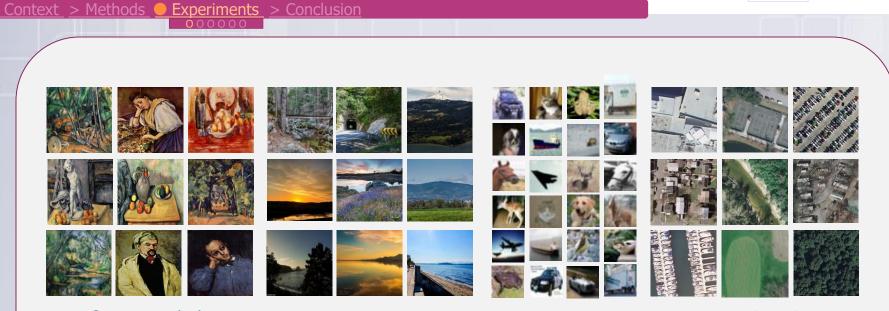
Let's put everything together! n=256 deep features in the decoder.











Cezanne paintings

LIRIS

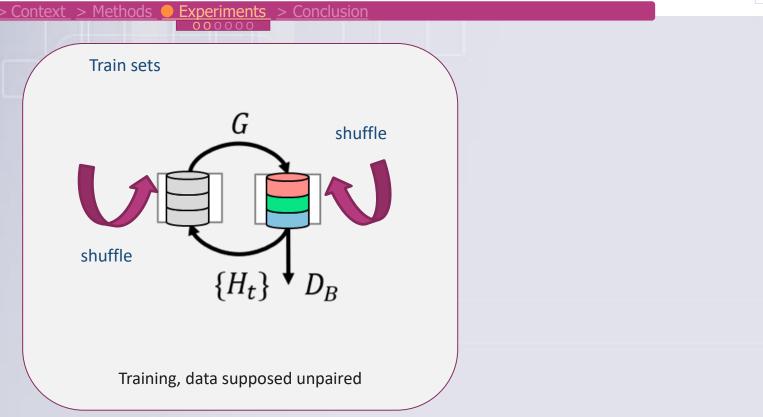
Landscape photos

Cifar10

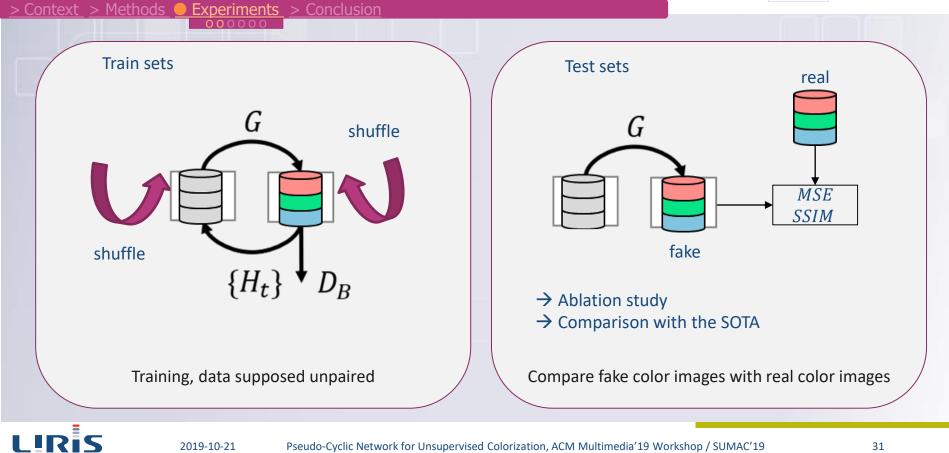
UCMerced Land Use

Data with real colors are used for evaluation. Shuffled and supposed unpaired for training.

Evaluation



Evaluation



Context > Methods

Experiments > Conclusion

000000

_

Output Ablation

Dataset	Loss function	Avg. MSE↓	Avg. SSIM (%)↑
Cezanne paintings	$\mathcal{L}^{1,2,3}$	91.5	82
Landscape photos	$\mathcal{L}^{1,2,3}$	85.1	83
UCMerced Land Use	$\mathcal{L}^{1,2,3}$	83.1	85
Cifar-10	$\mathcal{L}^{1,2,3}$	86.8	89

Loss with all outputs $L^{1,2,3}$

Context > Methods (

Experiments > Conclusion

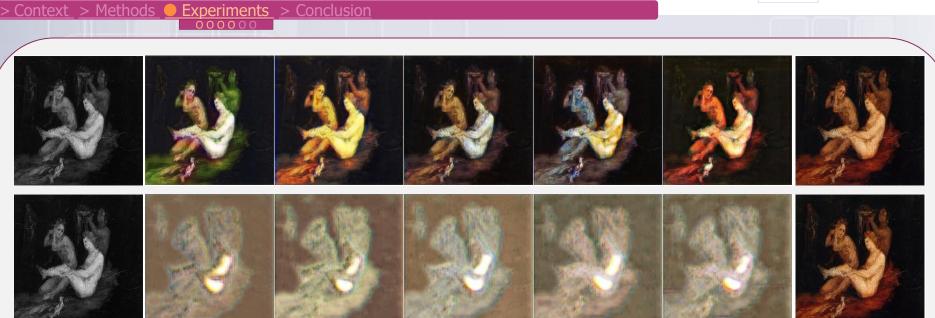
000000

_

Output Ablation

Dataset	Loss function	A	vg. MSE	Ļ	Avg. SSIM (%)↑
Cezanne paintings	\mathcal{L}^{1}		92.9		82
Cezanne paintings	$\mathcal{L}^{1,2,3}$		91.5		82
Landscape photos	\mathcal{L}^{1}		85.7		83
Landscape photos	$\mathcal{L}^{1,2,3}$		85.1		83
UCMerced Land Use	\mathcal{L}^{1}		85.5		86
UCMerced Land Use	$\mathcal{L}^{1,2,3}$		83.1		85
Cifar-10	\mathcal{L}^{1}		87.2		89
Cifar-10	$\mathcal{L}^{1,2,3}$		86.8		89

Loss with all outputs $L^{1,2,3}$ Loss with only last output L^1



Real Gray

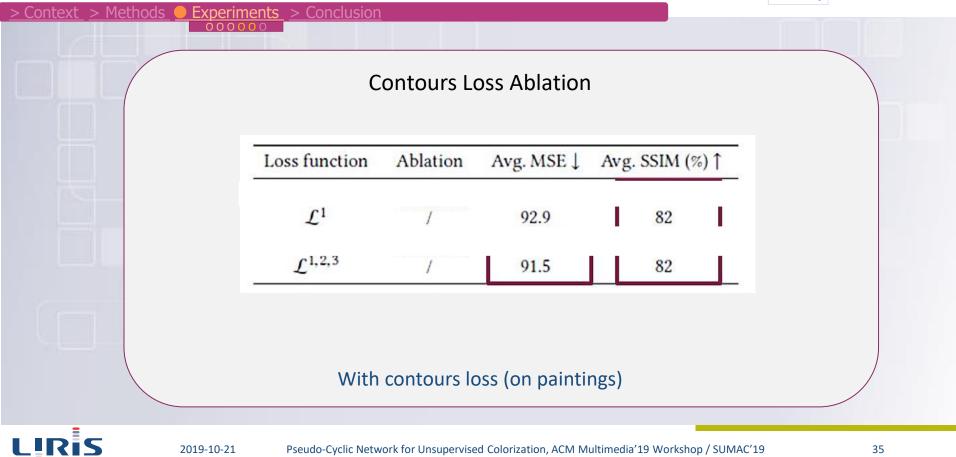
LIRIS

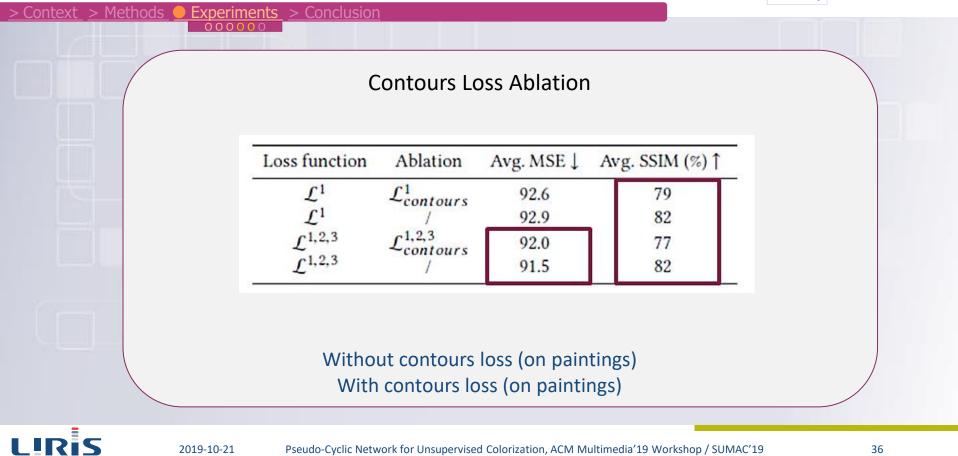
Real Color

Intermediary outputs (H/2, W/2). Top: without output ablation Bottom: with output ablation

2019-10-21

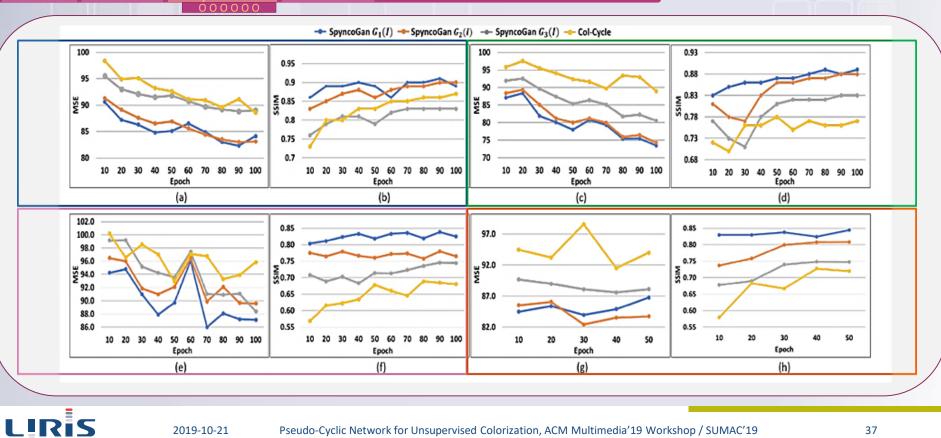
Pseudo-Cyclic Network for Unsupervised Colorization, ACM Multimedia'19 Workshop / SUMAC'19





Comparison with SOTA

Experiments > Conclusion Context Methods



Conclusion

<u>> Context</u> <u>> Methods</u> <u>> Experiments</u> <u>Conclusion</u>

Conclusions

Handcrafted functions help to constrain deep neural networks for colorization

Output Spatial Pyramids are promising, but they require more memory

Training a classification network on colorized images improves generalization (see the paper...) Future works

Multispectral and Hyperspectral

Other generative tasks (e.g., segmentation)

2019-10-21

To see more results...

