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Could we use a handcrafted function to constrain the training 
of an unsupervised generative neural network for colorization? 
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✓ Remove half the number of parameters

✓ Constrain the representation using 𝐻𝑡 as a prior

Color space 𝐵 is 𝑅𝐺𝐵→ linear & differentiable𝐻𝑡

𝐻𝑡 is the weighted sum of RGB channels
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Loss calculated with all scales
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Need constant number of features in the decoder
Let’s keep it large to increase representativity
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Let’s put everything together! n=256 deep features in the decoder.
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Data with real colors are used for evaluation. 
Shuffled and supposed unpaired for training.

Cezanne paintings Cifar10Landscape photos UCMerced Land Use
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Compare fake color images with real color images

Test sets 

𝑀𝑆𝐸
𝑆𝑆𝐼𝑀

Training, data supposed unpaired

Train sets 

→ Ablation study
→ Comparison with the SOTA

shuffle

shuffle

fake

real
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Output Ablation
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Output Ablation

Loss with all outputs 𝐿1,2,3

Loss with only last output 𝐿1
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Intermediary outputs (H/2, W/2). 
Top: without output ablation
Bottom: with output ablation

Real Gray Real Color
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Contours Loss Ablation

With contours loss (on paintings)
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Handcrafted functions help to constrain deep
neural networks for colorization

Output Spatial Pyramids are promising, but they
require more memory

Training a classification network on colorized
images improves generalization

(see the paper…)

Multispectral and Hyperspectral

Other generative tasks
(e.g., segmentation)

Conclusions Future works



To see more results…

Supplementary materials
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Thank you for 
your attention!

http://tiny.cc/mvz5dz
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